A Verifier for The UPC Memory Consistency Model

Presented by: Oystein Thorsen
othorsen@mtu.edu
Overview

- P and NP
- Reducibility
- NP-complete problems
- Satisfiability problem (SAT)
- The UPC Memory Consistency Model
- The verifier
Computational complexity

• Computational resources

• P
 – Solution is found in polynomial time
 • Bubble sort: $O(n^2)$
 • Quick sort: $O(n \log n)$

• NP
 – Solution is verified in polynomial time
 • Subset sum
 • Hamiltonian Cycle
 • Vertex Cover
NP-complete and reduction

• In NP
• Is NP-Hard
 – All problems in NP can reduce to it
 – How to prove this?

• Reduce from another NP-complete problem
Satisfiability

- The problem of finding a satisfying variable assignment to a boolean formula.
- The first problem to be proven to be a NP-complete problem
- Can be reduced to the CNF-SAT problem.
 - Many good solvers
 - Versatile
UPC Memory Model
Problem description

• Create an observed ordering for each thread
• Set of operation tuples <obs, pc, op, cons, var, data, iss, id>
 – Id: unique id
 – Obs: Observing thread
 – Pc: Program Counter
 – Op: operation type (Read, Write)
 – Cons: coherence type (Strict, Relaxed)
 – Var: shared memory variable
 – Data: a read or stored value
 – Iss: issuing thread
SAT representation

- Variable = pair of operations
- Variable assignment will give the ordering
Ordering rules

• AllStrict
• TransitiveOrder
• IrreflexiveOrder
• ProgramOrder
• ReadValue
• TotalOrder