
New Covert Channels in HTTP

Adding Unwitting Web Browsers to Anonymity Sets

Matthias Bauer
Institut für Informatik

Martensstrasse 3
91058 Erlangen, Germany

matthiasb@acm.org

ABSTRACT
This paper presents new methods enabling anonymous com-
m unicationon the Internet. We describe a new protocol
that allo ws us to create an anonymous overlay network by
exploiting the web bro wsing activities of regular users.We
show that the overlay netw orkprovides an anonymity set
greater than the set of senders and receivers in a realistic
threat model. In particular, the protocol provides unob-
servabilit y in our threat model.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Netw orks]: General�
Security and protection; K.4.1 [Computers and Society]:
Public Policy Issues�Privacy

General Terms
Securit y

Keywords
Covert channel, HTTP, mix network, anonymity

1. INTRODUCTION
Priv acy on the Internet gains importance as most netw ork

activit y can be linked to a user's identity. Proposed solutions
that use Chaumian mixes show certain tra�c patterns if not
every user runs a node in the system. We describe a realistic
threat model and present a new set of protocols that allow
unobservable communication.
In 1981, David Chaum presented the concept of mixes, a

protocol to provide sender�receiver unlinkability under stan-
dard cryptographic assumptions. Unlinkabilit y means that
an observer does not learn anything to improve her guesses
on who communicates with whom (The a�priori probability
of two entities being related is equal to the a�p osterioriprob-
abilit y). The notion of the anonymity set is essen tial when

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’03, October 30, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-776-1/03/0010 ...$5.00.

measuring anonymity. It is the set of all possible subjects
who might cause an action [27]. In the context of classi-
cal communication protocols, it consists of the senders and
receivers.
Currently employed implementations of mix networks are,

for example, the Cypherpunks [34] and Mixmaster [32]re-
mailers and the nascent Mixminion project [13]. Chaum's
w orkmotivated other schemes whic havoid expensive de-
cryption at each step, to minimize delay, for example, Crowds
[36] and Onion Routing [22].
In practice, most users of these systems do not run mix

nodes themselves. They cause tra�c patterns to and from
the set of mix nodes, which a global, passive adversary can
use to reduce the anonymity provided by the systems. P ossi-
ble attac ks b y suc h an observer include intersection, timing
and packet coun ting attac ks on remailers and other systems
deriv ed from Chaumian mixes [11, 3, 35]. Suggested so-
lutions introduce cover tra�c into the protocols. This is
achiev ed mainly by having the senders inject dummy mes-
sages [7], which are discarded at some mix.
Unobservability is a stronger property than unlinkability,

meaning that an observer cannot tell if messages are being
sent or received at all.
This paper presents techniques to enlarge the anonymity

set by including noninvolv ed subjects who provide cover
tra�c for the protocol in question. Our approach is to hide
communication within transit tra�c going through HTTP
browsers.
In our model, the adversary cannot distinguish senders or

receivers in the hidden protocol from other HTTP users con-
tacting the same set of servers. This enlarges the anonymity
set bey ond senders and receivers and provides unobservabil-
ity.
The rest of the paper is organized as follows. In Section 2,

we de�ne our adversary model. Section 3 brie�y introduces
Chaumian mixes and explains why HTTP is a good choice of
cover protocol. Related work is examined in Section 4. Sec-
tion 5 describes a new class of covert channels inside HTTP
whic h allow communication betw een servers under the cover
of user�generated tra�c. To show how these channels can
be put to use in a Chaumian mix, we presen t a simple pro-
tocol in Section 6. Unsolved problems and areas for future
research are discussed in Section 7. We conclude with Sec-
tion 8.

72

2. THREAT MODEL
T o mount the timing and intersection attac ks against many

employed systems, the observ eronly needs to inspect the
headers in the layers belo w the application layer of the TCP/IP
stack at selected points on the Internet.
This precisely matches the capabilities of current (legal)

telecommunication surveillance. T ocite the CALEA1 Im-
plementation Section of the FBI:

examine[ing] the full packet stream and examine
protocol layers higher than layer 3 w ould place a
high load on existing netw ork elements in most
architectures. [41].

The speci�cation of �tra�c data� in the EU Convention
on Cybercrime [12] indicates that the intended mandatory
surv eillance by internet service providers is restricted to the
lower three layers of the TCP/IP stack.
We grant our adversary the additional ability to inspect

application layer headers. This adversary model corresponds
to an observer who is datamining tra�c logs for cliques of
communicating people. This is a realistic and impending
threat.

3. BACKGROUND
In Chaumian mixes, nodes relay messages for each other.

Eac hnode has a (public key, private key) pair. T o send a
message along a chain of relaying mixes through the mix
overlay netw ork, the address of the �nal recipient is attached
to the message. The result is encrypted with the public key
of the last nodein the chain. The address of the node is
attached to the result and the process repeated for each
node along the chosen path tow ard the �rst. On receipt of
a message, a node decrypts it and � if it is not the �nal
recipien t itself � forw ardsit to the node speci�ed in the
decrypted text.
Later improvements on Chaum's scheme suggest random

delays, various strategies to process and subsequently dis-
patch messages (�ushing) [32, 26, 35], re�ordering of mes-
sages in the pool, padding the messages to a �xed size after
decryption, and other improvements to ensure unlinkabilit y.
Although recently contributed sc hemes (e.g. MorphMix

[37], GNUnet's GAP [4] or T arzan [19]) require users to
transport tra�c for other users, many deployed Chaumian
mixes and derived systems su�er from the problem that most
users do not � or perhaps cannot � run nodes in the sys-
tems themselves. They may be hindered by Net work Ad-
dress T ranslation [40], dynamic � and therefore unstable �
IP addresses or restrictive �rewalling policies. This greatly
w eakens the achiev ableanonymity, as a passiv eadv ersary
can observe tra�c patterns leading to and coming from the
mix netw ork.
T o thwart tra�c analysis, w e suggest hiding the proto-

col inside the w ell�established HyperText T ransfer Proto-
col (HTTP[25, 18]). A ccording to recent measurements[31],
HTTP accounts for the highest percentage of data on the In-
ternet, only slightly less than FastTrack's [15] Peer�to�Peer
protocol.
Using HTTP as cover tra�c brings another adv antage.

There is already an extensiv ebody of research, and sev-
eral implementations, which aim at providing some degree
of anonymity for HTTP clien ts in the presence of various

1Communications Assistance for Law Enforcement Act

adv ersaries, see for example [36], [2], [20] and [6]. These
techniques can be employed to enhance unlinkability.
HTTP is a client�server protocol. At �rst, this seems to

imply that hidden data can only be forw ardedthrough a
chain of alternating clien ts and servers, all of whic hhave
to be participants of the hidden network. We will show,
how ever,that communication betw een servers is feasable
through standard web�clien ts which need not be part of the
communit y using the covert protocol.

4. RELATED WORK
The concept of covert channels was in troduced by B. Lamp-

son in 1973 [29]. Co vert channels in the netw ork and trans-
port la yers of the TCP/IP protocol were examined by Row-
land [38] and Fisk et al. [17]. Using HTTP as substrate for
other application level protocols is discussed in RFC 3205
[33], where only overt encapsulation of protocols is consid-
ered, naturally. There are several tools that tunnel protocols
through HTTP, mostly for circumvention of �rewalls, for ex-
ample, Lars Brinkho�'s httptunnel [8]. These tools can be
used to disguise any protocol as HTTP tra�c, but the set of
entities in which to hide (the anonymity set [27]) consists of
just the sender and receiver, whereas the constructions listed
in Section 5 use real cover tra�c, involving unwitting web
surfers as co ver.In Infranet [16], covert channels in HTTP
are used to circumvent web�censorship. Web servers partic-
ipating in the Infranet receive hidden requests for censored
w eb pages and return the pages' content steganographically
hidden in harmless images. Goldberg and Wagner's TAZ
and rewebber netw ork [21] implements anon ymous publish-
ing based on HTTP.
In [6], the authors brie�y touch on the subject ofunob-

servabilit y, but conclude that real users would inadvertedly
destro y this property. Surv eys such as Raymond's [35] men-
tion the concept, but do not point to protocols that provide
it.

5. SERVER–TO–SERVER CHANNEL
THROUGH UNWITTING CLIENTS

In this section, w e explain how HTTP servers can com-
m unicate through clients without the consent or knowledge
of the user. This constitutes a new class of covert channel,
whic h transports data indirectly. The main mechanisms in-
side HTTP/HTML that allow such data transmissions are:

1. Redirects

2. Cookies

3. Referer2 headers

4. HTML elements

5. �Active Content�

These features can be employed as follo ws:

5.0.1 Redirects
Redirects (RFC 2616 �303� messages [25]) are used to

refer the clien t to another location. The location can be
the URL of a CGI script, with optional parameters in the
QUERY_STRING [9]. This allows CGI scripts to send data in

2the typo was in the RFC and stuck.

73

said parameters to other CGI scripts through the browsers of
unwitting web surfers. This c hannel's capacity is restricted
to 1024 URL�encoded bytes [5].

5.0.2 Cookies

Cookies constitute a mechanism to keep state information
on the client side. T o advise the client to keep a (key,value)
pair for further communication, a server sends a Set-Cookie:
header in the reply to a request. The value part is allo wed
to be up to 4 kilobytes long, and the standard speci�es that
a client must be able to store up to a maximum of 40 cookies
per serv er. In the serv er�to�serv er con text, w e can use op-
tional features to transport data betw een the serv ers.The
de�nition of cookies in RFC 2109 [28] de�nes a protocol sub�
�eld domain whic h carries information about what group of
w eb servers the cookie is to be sent to. The RFC states
that the domain m ust con tain at least t wo dots if it ends in
a three�letter Top Level Domain (TLD) and at least three
dots if it ends in a tw o�letter TLD. There are a many free
Dynamic DNS services online, most of which provide host-
names in domains with this property, e.g., all hostnames in
the zone administered by dyndns.org are in the same cookie
domain. If a CGI script on server foo.dyndns.org sends a
cookie of the form

KEY = VALUE; domain = .dyndns.org; Path = /;

to a bro wser and the browser connects to server
bar.dyndns.org, then bar will get foo's (key,value) pair. To
get the bro wser to request data objects frombar.dyndns.org,
the document requested from foo could contain one of the
tags mentioned below under �HTML elements�, or con tains
activ e content that requests data from bar automatically.

5.0.3 Referer
Referer headers contain the location of the web page or

script that linked to the presently requested one. Since the
naming of con tents can be chosen arbitrarily by a server
� and forced upon the browser by automatic requests as
described below in subsection 5.0.4 � this is another channel
between servers through un witting browsers. The length
restriction of redirects applies here, too.

5.0.4 HTML Elements
The HyperText Markup Language (HTML) version 4 con-

tains elements that cause most browsers to automatically
request given documents from HTTP servers. The following
HTML tags and attributes have this property:

• frame src=URL Indicates a part of a frameset.

• iframe src=URL De�nes an embedded frame.

• img src=URL De�nes an inline image.

• script src=URL Indicates that JavaScript (see below)
functions for this page should be loaded from URL.

• link href=URL Indicates out�of�band information for
the current page.

• object src=URL De�nes an embeddedmulti�media ob-
ject to load.

• applet codebase=URL Indicates that Java (see below)
classes for this page should be loaded from URL.

• embed src=URL De�nes an embedded multi�media ob-
ject to load.

• layer src=URL De�nes a transparent layer of this page.

If the HTML document is created b y a CGI script, theURL
value in the tags above can be set to contain the address of
another script together with parameters.
The <META HTTP-EQUIV> tag/attribute allows embedding
of HTTP protocol header �elds in the body of an HTTP
message. This is useful for our purposes, because the header
thus em bedded inthe body escapes the inspection of our
adv ersary de�ned in Section 2. Interesting applications in
our con text are:

• Redirects (return code 303 [25]) inside successful replies
(return code 500):
<META HTTP-EQUIV="Refresh"
CONTENT="3;URL=http://www.some.org/some.html">
This line of HTML causes the browser to request
some.html from www.some.org after 3 seconds.

• Setting cookies without a Set�Cookie header:
<META HTTP-EQUIV="Set-Cookie"
CONTENT="key=value;path=/;domain=.dyndns.org">

This line sets a cookie on the browser, whic h will be
transmitted to every server in the dyndns.org sub�
domain to which the browser subsequently connects.

5.0.5 Active Content
So�called �Active Content� is code that is executed on

the clien t. Currently used languages for active content are
SUN's Java [24], Netscape's JavaScript [10], Macromedia's
Flash [1] and Microsoft's A ctiveX [30], the latter being re-
stricted to a single browser, so it will not be discussed here.
In Ja va's design, considerable e�ort was made to make the
execution of untrusted code on the client secure. Java's secu-
rity framework inhibits connections to servers di�ering from
the one which supplied the running applet, so it cannot be
used to transmit data to di�erent servers. Of the remain-
ing t w o languages,we chose Javascript, because it is more
wide�spread and better documented. Running code on un-
suspecting surfer's machines opens a number of channels of
varying bandwidth betw een scripts on servers. To name tw o
examples:

• It is trivial to program redirects to CGI scripts (with
parameters) in JavaScript.

• A script may construct an invisible FORM [42], �ll the
�elds with data and send all of it to a CGI script in
the body of a POST request without userin teraction.
This channel allows almost arbitrarily large payloads.

All the above mechanisms are heavily relied on by authors
of HTML documents and CGI scripts.

6. THE MUTED POSTHORN — A CHAU-
MIAN MIX ON BANNER ADVERTS

T o demonstrate how a anonymous messaging protocol can
use HTTP as cover tra�c to achieve unobservability against
our adversary, we presen t a simple Chaumian mix.

74

6.1 The Setup
In our v arian t of Chaum's protocol, theMuted Posthorn,

four (not necessarily disjoint) groups of entities are in volved:

The node maintainers provide CGI scripts on HTTP
servers. The scripts work as mix nodes and so every
script has a (publickey, secretkey) pair and a pool for
messages to be forwarded. A script is called with the
message as the parameter of a POST request. The
scripts w ork as in Chaum's mix netw orks, i.e. on re-
ceipt of a message, they decrypt it and look at headers
specifying further processing. In our simple protocol,
there are three possible actions, forwarding the mes-
sage to another node, storing the message in a local
mailbox with a supplied name (a 128 bit number), and
sending the content of a given mailbox bac k to the re-
questing HTTP client. The outw ard visible action of
the scripts is to return either an HTML document with
JavaScipt code that submits data to another node, or
a short, static HTML document.

The linkers maintain web pages which all seem to contain
the same small icon or banner advert. They do this
by including an iframe whic h includes a frameset on
one of the nodes. The frameset consists of a frame
with the image and a second, invisible frame. This
frame is created by a node and either con tains the
JavaScript code that does the actual transport, or the
short HTML document.

The senders and receivers use this setup to communi-
cate encrypted messages. Senders construct messages
as in recen t mix netw orks, e.g.Mixmaster [32], but the
�nal delivery address of a message is always a mailbox
on a node, and special actions must be taken for the
�rst hop in a chain. A message thus constructed is
sent to the �rst of the nodes in the chain by sending
a POST request to a script. Receivers must pull their
mailboxes. They do this by sending encrypted �send
mailbox number N� requests to the nodes where they
keep mailboxes.

Hapless w eb surfersjust visit the pages maintained by
the linkers. Their browsers execute the JavaScript
code returned by the node, transfering messages in the
process.

6.2 A first Version
A simple varian t of our protocol uses tw o kinds of mes-

sages:

To: messages contain encrypted messages to nodes in the
netw ork.

Get: messages request mailboxes from nodes.

Messages are always padded to a �xed length with random-
ness. When preparing a message m0 for a sequence of nodes
ni, the sender recursively computes

mi+1 = To :||ni||Eni(mi).

where En(m) encrypts message m for n's public key. For
the last node, the To header is omitted. The sender submits
the encrypted message to the last node in a POST request.

A receiving node tries to decrypt the message with its se-
cret key. If decryption succeeds, the resulting text is parsed
for headers.
If it is a Get message, the node looks up the requested

mailbox. If it exists, the node throws a coin. On 0, the con-
tent is sent � through the requesting client � as a message
to a random node in the mix netw ork. The client can ex-
tract the message, for example, from its local browser cache.
On 1, a �xed HTML response is sent to the clien t. If the
mailbox does not exist, again a coin is tossed, this time to
decide whether to send a randomly chosen message from the
pool through the client or the HTML response.
If it is a To message, the address is examined. If it is a

mailbox number, the message is stored in it. If the addressee
is a URL, the message is put in the message pool for further
delivery. Again, a coin throw decides whether a randomly
chosen message from the pool or the �xed HTML response
is returned to the client.
Against a passiv e observer as the adv ersary de�ned in

Section 2, this protocol provides unobservability. Senders of
messages and requesters of mailboxes send HTTP GET re-
quests as any harmless client. Upon receipt of the JavaScript
document, they substitute their own messages for the ones
set inside the JavaScript code, and then let the browser
execute the code. An observer who is restricted to the
IP/TCP/HTTP headers thus cannot distinguish between
harmless browsers and senders/receivers. This increases the
anonymity set by the noninvolved web surfers.

6.3 DoS attack on the first protocol
The simple protocol abo ve is susceptible to atrivial de-

nial of service attack. An adversary can simply request the
frameset from a node repeatedly to drain its message pool.
T o defend against this attack, we introduce acknowledge-

ments for received messages (ACKs) between the nodes.
Eac hmessage is kept in the pool and is re�sent until an
A CK for the message is received. A CKs are not sent imme-
diatly , but are put in the message pool themselves.
An ACK should be tied to the message it ackno wledges

and to the node the message w as addressed to, to avoid
forged A CKsand replays. The standard approach would
be to sign ACKs with the node's secret key. But deploying
digital signatures at all w ould imply that the nodes kno w
each other's public keys. Experience with remailers, how-
ever, sho ws that knowledge about such a global state of the
mix netw ork is hard to achiev e. For this reasonw e would
like to avoid all public key operations at the nodes, except
decryption.
Our suggestion is to send the hash of the decrypted text as

A CK to the previous node (to make them indistinguishable
from other messages, ACKs are padded with randomness to
the �xed message size). The original sender knows all in-
termediate messages on the path, since she constructs them
layer by layer. So she can inform every node onthe path
about what ACK to expect. She does this by including the
A CKs as values of additional Ack headers. The rule for con-
structing the next layer is now:

mi+1 = To :||ni||Ack :||h(mi)||Eni(mi).

A node keeps three tables: the message pool of outgoing
messages, a list of outstanding ACKs and a list of mailboxes
(see �gure 1).

75

Ack:

To: node2 PadE_node2(mess2)

To: node1 E_node1(mess1) Pad 0x123456

0xabcdef

mbox2: message_b Pad

mbox1: Padmessage_a

Mailboxes:

ack1, ack2 PadAck: node2

Message Pool:

Figure 1: The internal state of a node: message pool

with messages and acknowledgements for received

messages, ACK table with outstanding ACKs and

references to messages in the pool, and the mail-

boxes.

On receipt of a message, a node checks if it is an acknowl-
edgement. This is done by inspecting the �rst |h()| bits
of the message, where h is the cryptographic hash function
used for ACKs. The resulting block is checked against the
table of outstanding ACKs. If the block matches, the ACK
itself and the message corresponding to it are removed from
the table and the pool, respectively. Note that the URL of
the sending node is transmitted by the clien t in theReferer
header.
When processing To messages, the node now creates an

entry in its ACK table with the value of the Ack header.
The node computes the hash of the decrypted message and
constructs an ACK message for the node that sent the mes-
sage

6.4 Properties of the Protocol
The protocol inherits practical adv an tagesfrom HTTP.

All transactions of senders, receivers and un witting web
surfers can be performed through HTTP anonymizing sys-
tems such as Anonymizer [2], Crowds [36] or JAP [6].
The protocol's tra�c is typically not blocked or modi�ed

at �rewalls, and passes though Netw ork Address Translation
[40] without problems.
The coin tossing on the nodes makes the auto�submits

terminate after tw o repetitions, in the mean. For a �xed
message size of four kilob ytes, the resulting tra�c for the
clien t is about the same as that for a banner advertisement
(typically 16 kb).

7. UNSOLVED PROBLEMS AND DIREC-
TIONS FOR FUTURE RESEARCH

Although the idea of a mix netw ork with an enlarged
anon ymity set seems promising, a number of open problems
and possible enhancements must be discussed.
Do acknowledgements (or lack thereof) intr oduce new points

of attack? If a node does not receive an ACK for a message,
it will re-send the message at some later time. The repeat-
ing pattern marks it as being a message as opposed to an
A CK or randomness.
User behaviour in�uences the timing of message delivery.

This could lead to a Trickle [39] attack. T o reduce this in�u-
ence, a node could send randomness of appropriate size to

a randomly chosen node, if a client connects but the node's
batc hing strategy does not dispatch a message from the pool.
This would allow reuse of most of the known pooling algo-
rithms.
The time a message spends in the mix network before �nal

delivery is dep endent on external factors, namely the whims
and inclinations of unknown web surfers, and the willingness
of w eb�site maintainers (linkers) to place links to the nodes
on their pages. Should all the linker's pages become unpop-
ular at some point, communication would stop entirely.
One way around this problem would be to combine the

mix netw orkwith an Internet adv ertising company. The
adv ertisements (placed in IFRAMEs) w ould show ads while
at the same time transporting data betw een the di�erent
servers of the advertising company. If cookies are used as
the channel of communication, it would not benoticeably
di�erent from what Doubleclick Inc. is doing now [14].
Can we achieve unobservability against a global observer

who inspects complete data payloads, instead of just the
headers? Universal re�encryption [23] o�ers a solution.
In universal re�encryption, a third party (the unwitting

clients, in our case) can change the random factor in a prob-
abilistic public key encryption, and the following properties
hold:

1. The third party does not need to know the public key
with which the message is encrypted.

2. For two given encrypted messages, after re�encryption,
an adversary cannot tell which of the outputs corre-
sponds to which original encryption.

In [23], P . Golle et al. show how universal re�encryption
can be implemented with El�Gamal and a public (Group,
Generator) pair. They also show how re�encryption can be
extended to hybrid encryption schemes, where the public
key scheme is used to encrypt a session key and the message
itself is encrypted with a symmetric cipher and the session
key.
Unfortunately, JavaScript has no built�in functions for

arithmetic of large numbers nor symmetric ciphers, and im-
plemented in JavaScript, they w ould be extremely slow.
Java, ho w ever, o�ers themath.BigInteger and SecureRandom
classes necessary for implementing the re�encryption algo-
rithm. Inconsistent with the security requirements of Java,
standard browser implementations allow JavaScript to call
public methods and variables of Java objects. JavaScript in
turn can be used to submit the re�encrypted message to the
next node, as in the protocol above.
The global observer would see a random�looking message

delivered to the client and another random�looking message
from the client to the next node. Because of the properties
of El�Gamal (and the symmetric cipher in the case of hybrid
encryption), the observer cannot distinguish realmessages
from randomness. Because of the properties of universal re�
encryption, she can only guess whether the outgoing message
is a re�encryption of the received one or a completely new
message substituted by the client. Inspection of the HTTP
body does not help to distinguish senders and receivers from
un witting web surfers.
Universal re�encryption also remedies the problem of re-

peated messages, mentioned above. The node would re�
encrypt the message in the pool before sending, so that ob-
servable messages are always di�erent.

76

8. SUMMARY
Priv acy is of gro wingconcern for users of the Internet's

services. Existing privacy enhancing technologies can assure
anon ymity only if the anon ymity set is su�ciently large.
In most curren t protocols, the size of the anonyity set is
bounded by the number of the activ e users of a protocol.
After de�ning a reasonable adversary model, we show ed ho w
the anonymity set of a protocol can be enlarged by having
non�participants generate cover tra�c. We presented new
covert channels in the most wide�spread protocol on the
Internet, the HyperText T ransfer Protocol,and proceeded
to describe a simple Chaumian mix based on CGI scripts,
in which the anonymity set consist of senders, receivers and
unknowing participants, thereb yenhancing anonymity for
the senders and receivers. We explained remaining problems
of our protocol and suggested areas for future research.

9. ACKNOWLEDGEMENTS
We thank Niels Provos, Marius Aamodt Eriksen, Andrei

Serjantov and Roger Dingledine for helpful suggestions and
comments.

10. REFERENCES
[1] Agency, V. M. D. SWF format speci�cation.

http://www.openswf.org/spec.html.

[2] http://www.anonymizer.com/.

[3] Back, A., Möller, U., and Stiglic, A. Tra�c analysis
attacks and trade-o�s in anonymity providing
systems. In Information Hiding (IH 2001) (2001), I. S.
Moskowitz, Ed., Springer-Verlag, LNCS 2137,
pp. 245�257.
http:
//www.cypherspace.org/adam/pubs/traffic.pdf.

[4] Bennett, K., and Grotho�, C. GAP � practical
anon ymous netw orking. InPr oceedings of Privacy
Enhancing Technolo gies workshop (PET 2003)
(March 2003), R. Dingledine, Ed., Springer-Verlag,
LNCS 2760.

[5] Berners-Lee, T., Masinter, L., and McCahill, M.
Uniform resource locators (URL). RFC, In ternet
Engineering Task F orce, December 1994. RFC 1738.

[6] Berthold, O., Federrath, H., and Köpsell, S. Web
MIXes: A system for anonymous and unobservable
internet access. In Designing Privacy Enhancing
T echnolo gies. Pr oc. Workshop on Design Issues in
A nonymity and Unobservability (2001), H. F. (Ed.),
Ed., Springer, pp. 115�129. LNCS 2009.

[7] Berthold, O., and Langos, H. Dummy tra�c against
long term intersection attacks. In Privacy Enhancing
T echnolo gies (PET 2002)(2002), R. Dingledine and
P . Syv erson, Eds., Springer-Verlag, LNCS 2482.

[8] Brinkho�, L. GNU httptunnel.
http://www.nocrew.org/software/httptunnel.html.

[9] Coar, K. A. L., and Robinson, D. The WWW
Common Gateway Interface, v ersion 1.1.http://
cgi-spec.golux.com/draft-coar-cgi-v11-03.txt,
June 1999.

[10] Corp., N. C. Core JavaScript Guide 1.5.
http://developer.netscape.com/docs/manuals/js/

core/jsguide15/contents.html, 2000.

[11] Cottrell, L. Mixmaster and remailer attacks.
http://www.obscura.com/~loki/remailer/
remailer-essay.html, 1994.

[12] Council of Europe. Convention on cybercrime. Tech.
rep., European Union, 2001. available from
http://conventions.coe.int/Treaty/en/Treaties/
Html/185.htm.

[13] Danezis, G., Dingledine, R., and Mathewson, N.
Mixminion: Design of a Type III Anonymous
Remailer Protocol. In Proceedings of the 2003 IEEE
Symposium on Security and Privacy (May 2003).

[14] Doubleclick, I. DART.
http://www.doubleclick.com/us/corporate/
privacy/privacy/internet-ads/dart.asp, 2003.

[15] KaZaA BV. http://www.fasttrack.nu/.

[16] F eamster, N., Balazinska, M., Harfst, G.,
Balakrishnan, H., and Karger, D. Infranet:
Circumventing Censorship and Surveillance. In
Pr oceedings of the 11th USENIX Security Symposium
(San Francisco, CA, August 2002).

[17] Fisk, G., Fisk, M., Papadopoulos, C., and Neil, J.
Eliminating Steganography in Internet Tra�c with
Active Wardens. In Information Hiding 2002 (2002),
Springer, pp. 18�35.

[18] F ranks, J., Hallam-Baker, P ., Hostetler, J., Lawrence,
S., Leac h, P ., Luotonen, A., and Stewart, L. HTTP
Authentication: Basic and Digest Access
Authentication . RFC, Internet Engeneering Task
Force, June 1999. RFC 2617.

[19] F reedman, M. J., and Morris, R. Tarzan: A
peer�to�peer anonymizing network layer. In Pr oc. of
the ACM Conference on Computer and
Communications Se curity (CCS2002)(No vember
2002).

[20] Gabber, E., Gibbons, P., Matias, Y., , and Mayer, A.
How to make personalized web browsing simple,
secure, and anonymous. In Proceedings of Financial
Cryptography 97 (February 1997), Springer. LNCS
1318.

[21] Goldberg, I., and Wagner, D. TAZ servers and the
rewebber network: Enabling anonymous publishing on
the w orld wide web. First Monday 3, 4 (August 1998).

[22] Goldschlag, D. M., Reed, M. G., and Syverson, P. F.
Onion routing for anonymous and private internet
connections. Communications of the ACM 42, 2
(February 1999).

[23] Golle, P., Jak obsson, M., Juels, A., and Syverson, P.
Universal re-encryption for mixnets. preprint at
https://www.rsasecurity.com/rsalabs/staff/
bios/mjakobsson/univrenc/univrenc.ps, 2003.

[24] Gosling, J., Joy, B., Steele, G., and Bracha, G. The
Java Language Speci�cation.
java.sun.com/docs/books/jls/.

[25] Irvine, U., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P ., and Berners-Lee, T.
Hypertext transfer protocol � HTTP/1.1.
http://www.ietf.org/rfc/rfc2616.txt, June 1999.
RFC 2616.

[26] Kesdogan, D., Egner, M., and Büschk es, T.
Stop-and-go MIXes providing probabilistic anonymity
in an open system. In Information Hiding (IH 1998)

77

(1998), Springer-Verlag, LNCS 1525. http://www.cl.
cam.ac.uk/~fapp2/ihw98/ihw98-sgmix.pdf.

[27] K öhn topp, M., and P�tzmann, A. Anonymity,
unobservabilit y, and pseudonymity � a proposal for
terminology. In Designing Privacy Enhancing
T echnolo gies(July 2000), Springer.

[28] Kristol, D., and Montulli, L. HTTP state management
mechanism. http://www.ietf.org/rfc/rfc2109.txt,
F ebruary 1997. RFC 2109.

[29] Lampson, B. W. A note on the con�nement problem.
Communications of the ACM 16, 10 (October 1973),
613�615.

[30] Microsoft ActiveX (TM) development kit. http://
activex.adsp.or.jp/english/specs/overview.htm.

[31] Modeling, N., and Project, S. Distributions of tra�c
strati�ed by application. Tech. rep., Cooperative
Association for Internet Data Analysis (CAIDA),
September 2002.

[32] Möller, U., and Cottrell, L. Mixmaster Protocol �
Version 2. Un�nished draft, January 2000., 2000.
http://www.eskimo.com/~rowdenw/crypt/Mix/
draft-moeller-mixmaster2-protocol-00.txt.

[33] Moore, K. On the use of HTTP as a substrate. Tech.
rep., In ternet Engineering Task F orce, February 2002.
RFC 3205.

[34] P arekh, S. Prospects for remailers.First Monday 1, 2
(August 1996). http:
//www.firstmonday.dk/issues/issue2/remailers/.

[35] Ra ymond, J.-F. Tra�c analysis: Protocols, attacks,
design issues and open problems.

In Designing Privacy Enhancing Technologies:
Pr oceedings of International Workshop on Design
Issues in Anonymity and Unobservability (2001),
H. Federrath, Ed., Springer-Verlag, pp. 10�29. LNCS
2009.

[36] Reiter, M. K., and Rubin, A. D. Crowds: anonymity
for Web transactions. TISSEC 1, 1 (Nov. 1998), 66�92.

[37] Rennhard, M., and Plattner, B. Introducing
MorphMix: P eer-to-P eer based Anonymous Internet
Usage with Collusion Detection. In Pr oceedings of the
Workshop on Privacy in the Electronic Society
(Washington, DC, USA, November 2002).

[38] Ro wland, C. H. Covert channels in the TCP/IP
protocol suite. First Monday 2, 5 (May 1997).

[39] Serjan tov, A., Dingledine, R., and Syverson, P. From a
trickle to a �ood: Active attacks on several mix types.
In Proceedings of Information Hiding Workshop (IH
2002) (October 2002), F. Petitcolas, Ed.,
Springer-Verlag, LNCS 2578.

[40] Srisuresh, P., and Holdrege, M. IP Netw ork Address
T ranslator (NAT) Terminology and Considerations .
RFC, Internet Engineering Task Force, August 1999.
RFC 2663.

[41] T elecommunications Industry Association, C. T. .
Report to the federal communications commission on
surveillance of packet-mode technologies, September
2000. http://www.tiaonline.org/policy/filings/
JEM_Rpt_Final_092900.pdf.

[42] W3C, W. W. W. C. HTML 4.01 speci�cation.
http://www.w3.org/TR/html4/, 1999.

78

