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ABSTRACT
We consider the problem of clustering data over time. An
evolutionary clustering should simultaneously optimize two
potentially conflicting criteria: first, the clustering at any
point in time should remain faithful to the current data as
much as possible; and second, the clustering should not shift
dramatically from one timestep to the next. We present a
generic framework for this problem, and discuss evolutionary
versions of two widely-used clustering algorithms within this
framework: k-means and agglomerative hierarchical cluster-
ing. We extensively evaluate these algorithms on real data
sets and show that our algorithms can simultaneously at-
tain both high accuracy in capturing today’s data, and high
fidelity in reflecting yesterday’s clustering.

Categories and Subject Descriptors: H.3.3 [Informa-

tion Storage and Retrieval]: Information Search and Re-
trieval

General Terms: Algorithms, Experimentation, Measure-
ments

Keywords: Clustering, Temporal Evolution, Agglomera-
tive, k-means

1. INTRODUCTION
Evolutionary clustering is the problem of processing times-

tamped data to produce a sequence of clusterings; that is, a
clustering for each timestep of the system. Each clustering
in the sequence should be similar to the clustering at the
previous timestep, and should accurately reflect the data
arriving during that timestep.

The primary setting for this problem is the following. Ev-
ery day, new data arrives for the day, and must be incorpo-
rated into a clustering. If the data does not deviate from
historical expectations, the clustering should be “close” to
that from the previous day, providing the user with a famil-
iar view of the new data. However, if the structure of the
data changes significantly, the clustering must be modified
to reflect the new structure. Thus, the clustering algorithm
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must trade off the benefit of maintaining a consistent clus-
tering over time with the cost of deviating from an accurate
representation of the current data.

The benefits of evolutionary clustering compared to tra-
ditional clustering appear in situations in which the current
(say, daily) clustering is being consumed regularly by a user
or system. In such a setting, evolutionary clustering is useful
for the following reasons:

(1) Consistency: A user will find each day’s clustering
familiar, and so will not be required to learn a completely
new way of segmenting data. Similarly, any insights derived
from a study of previous clusters are more likely to apply to
future clusters.

(2) Noise removal: Providing a high-quality and histori-
cally consistent clustering provides greater robustness against
noise by taking previous data points into effect. As we de-
scribe later, our method subsumes standard approaches to
windowing and moving averages.

(3) Smoothing: If the true clusters shift over time, evo-
lutionary clustering will naturally present the user with a
smooth view of the transition.

(4) Cluster correspondence: As a side effect of our frame-
work, it is generally possible to place today’s clusters in
correspondence with yesterday’s clusters. Thus, even if the
clustering has shifted, the user will still be situated within
the historical context.

Overview of framework. Formally, let Ct be the cluster-
ing produced by the algorithm for data arriving at timestep
i. The snapshot quality of Ct measures how well Ct repre-
sents the data at timestep t. The history cost of the clus-
tering is a measure of the distance between Ct and Ct−1,
the clustering used during the previous timestep. Typically,
the snapshot quality is defined in terms of the data points
themselves, while the history cost is a function of the clus-
ter models. The overall cost of the clustering sequence is a
combination of the snapshot quality and the history cost at
each timestep.

For intuition, we consider an extreme example to show
why the introduction of history cost may have a signifi-
cant impact on the clustering sequence. Consider a data
set in which either of two features may be used to split the
data into two clusters: feature A and feature B. Each fea-
ture induces an orthogonal split of the data, and each split
is equally good. However, on odd-numbered days, feature
A provides a slightly better split, while on even-numbered
days, feature B is better. The optimal clustering on each day
will shift radically from the previous day, while a consistent
clustering using either feature will perform arbitrarily close



to optimal. In this case, a clustering algorithm that does
not take history into account will produce a poor clustering
sequence.

This approach may be contrasted to incremental cluster-

ing, in which a model is incrementally updated as new data
arrive, primarily to avoid the cost of storing all historical
similarities [9]. In evolutionary clustering, however, the fo-
cus is upon optimizing a new quality measure which incor-
porates deviation from history.

Summary of Contributions. We consider two classical
clustering algorithms and extend them to the evolutionary
setting: (1) the traditional k-means algorithm that provides
a flat clustering of points in a vector space, and (2) a bottom-
up agglomerative hierarchical clustering algorithm. These
represent two major categories of clustering methods and
we chose to use them to demonstrate the generality of our
framework. These algorithms are applied to a large evolv-
ing dataset of user-tags placed on images from flickr.com,
tracked over 68 weeks. Our experiments demonstrate all
the advantages of evolutionary clustering mentioned previ-
ously, namely, stable and consistent clusterings are obtained
even when the data exhibits noisy behavior, and a smooth
sequence of clusters with very low history cost can be ob-
tained for only a small reduction in total snapshot quality.

Our framework for evolutionary clustering is in fact quite
general. With suitable definitions of history cost and snap-
shot quality, many other static clustering algorithms can
now be extended to perform evolutionary clustering under
our framework. Furthermore, we focused on a setting in
which today’s data must be clustered before tomorrow’s
data is available. However, there are other natural settings.
For example, the entire sequence may be available to the
algorithm at once, but the algorithm must again produce a
sequence of clusterings that accurately reflect the data at
each timestep while shifting as gently as possible over time.
This formulation applies when the data should be clustered
retroactively but interpretability across time is an important
consideration. Similarly, there are settings in which the nu-
merical variable over which we track evolution is not time;
for example, we may cluster products by dollar value, and
ask that the clusterings for similar price buckets be as simi-
lar as possible. Our formulation can capture such directions
as well, but we will not explore them in this paper.

2. RELATED WORK
Clustering is a well-studied problem; see, for instance [16,

8]. However, to the best of our knowledge, evolutionary
clustering has not been considered before.

In the following, we briefly review the interplay of time
and notions related to clustering, including classification and
online topic detection and tracking.

Temporal aspects have been considered in some classi-
fication problems. Some work in online machine learning
considers learning tasks such as classification in which the
model evolves over time, and the algorithm is penalized for
both mistakes and shifts in the model from one timestep to
the next [11, 3]. However, it is unclear how this could be
used in the unsupervised learning setting.

Temporal aspects have also been considered in online doc-
ument clustering setting. Online document clustering ap-
plies clustering sequentially to a time series of text docu-
ments, in order to detect novelty in the form of certain types

of outliers [4]. Zhang et al. [18] proposed a probabilistic
model for online document clustering, where the emphasis
is again on detecting novelty. Clustering was also used in
automatic techniques for discovering and retrieving topically
related material in data streams, and to detect novel events
from a temporally ordered collection of news stories [17, 2].
However, the main goal of topic detection and tracking is
to detect new events in a time-line using methods such as
clustering, and not to produce clusterings that incorporate
history into the clustering objective.

In some data stream applications, time has played a dif-
ferent role with respect to clustering. Aggarwal et al. [1]
study the problem of clustering data streams at different
time horizons using an online statistical aggregation stage
and then an offline clustering stage. For more details on
clustering from a data stream analysis perspective, see [10].

The notion of clustering time-series has been considered
in statistics, data mining, and machine learning. Tempo-
ral correlation is perhaps the best-known approach to time-
series similarity [5]. Smyth [14] considers general cluster-
ing of sequence data using a probabilistic approach based
on hidden Markov models; see also [12]. Immorlica and
Chien [6] propose a low-dimensional representation of time-
series for clustering. They use a variety of basis functions in-
cluding piecewise-constant, piecewise-linear, and piecewise-
aggregate approximations. Vlachos et al. propose a Fourier
approach to this problem [15]. Our work, however, has much
broader scope; we must consider object feature similarity in
addition to the similarities in their time series, as will be
explained in the next section.

3. FRAMEWORK
In this section, we present our framework for evolutionary

clustering. We begin by differentiating between algorithms
that must cluster data as it arrives, versus algorithms that
have access to the entire time series before beginning work.
An evolutionary clustering algorithm is online if it must
provide a clustering of the data during timestep t before
seeing any data for timestep t+1. If the algorithm has access
to all data beforehand, it is offline. Offline algorithms may
“see the future,” and should perform at least as well as their
online counterparts. However, the online setting is arguably
more important for real-world applications, and there are
no natural, efficient offline algorithms that may be easily
employed as lower bounds. We therefore leave the offline
problem for future work, and focus on the online version.

3.1 Overview of the framework
Recall that an evolutionary clustering algorithm must pro-

duce a sequence of clusterings, one for each timestep. The
clustering produced during a particular timestep should mea-
sure well along two distinct criteria: it should have low
history cost, meaning it should be similar to the previous
clustering in the sequence, and it should have high snapshot
quality, meaning it should be a high-quality clustering of the
data that arrived during the current timestep. The snapshot
quality simply reflects the underlying figure of merit driving
a particular clustering algorithm in a non-evolutionary set-
ting. The history cost, however, must allow a comparison of
clusterings, in order to determine how much the later one has
shifted from the earlier. This comparison must address the
issue that some data will appear for the first time in the later
clustering, while some data will be seen in the earlier clus-



tering but not the later one, and so forth. There are many
examples of measures for comparing clusterings — see [13]
for a discussion of the complexities that arise even in the
case of flat clusterings. But this comparison may be more
sophisticated than simply a comparison of two partitions of
the universe. The comparison may occur at the data level,
for instance by comparing how similar pairs of data objects
are clustered, or at the model level, for instance by compar-
ing the best matching between two sets of centroids in the
k-means setting. In our setting, comparisons at the model
level make the most intuitive sense, and this is what we use.

First, we require a few high-level definitions. Let U =
{1, . . . , n} be the universe of objects to be clustered. Let
Ut ⊆ U be the set of all objects present at timestep t, and
let U≤t = ∪t′≤tUt′ be the set of all objects present in any
timestep up to and including step t.

An evolutionary clustering algorithm must behave as fol-
lows. At each timestep t, it should produce a clustering Ct of
U≤t, the objects seen by the algorithm so far. The distance
from Ct to Ct−1 will be evaluated with respect to U≤t−1 in
order to determine the historical accuracy of Ct. Specifi-
cally, if new data arrived for the first time during timestep
t, the clustering will not be penalized for deviating from the
previous clustering with respect to the new data unless this
deviation also impacts the clustering of historical data. The
history cost is computed by projecting Ct onto U≤t−1.

At the same time, the snapshot quality of Ct will be eval-
uated with respect to Ut, the objects that actually appear
during step t. These two measures, over all timesteps, will
provide an overall evaluation of the entire cluster sequence.

Observe that, in order to perform well, clustering Ct must
include objects in U≤t\Ut, that is, the objects that have been
seen in the past but have not appeared during the current
timestep. So either implicitly or explicitly, an evolutionary
clustering algorithm must “carry along” information about
the appropriate location of historical information.

3.2 Input to the framework
Recall that U = {1, . . . , n} is the universe of objects to

be clustered. At each timestep t where 1 ≤ t ≤ T , a new
set of data arrives to be clustered. We assume that this
data can be represented as an n × n matrix Mt that ex-
presses the relationship between each pair of data objects.
The relationship expressed by Mt can be either based on
similarity or based on distance depending on the require-
ments of the particular underlying clustering algorithm. If
the algorithm requires similarities (resp., distances), we will
write sim(i, j, t) (resp., dist(i, j, t)) to represent the similar-
ity (resp., distance) between objects i and j at time t.

At each timestep t, an online evolutionary clustering algo-
rithm is presented with a new matrix Mt, either sim(·, ·, t)
or dist(·, ·, t), and must produce Ct, the clustering for time
t, based on the new matrix and the history so far.

A user of the framework must specify a snapshot quality
function sq(Ct, Mt) that returns the quality of the clustering
Ct at time t with respect to Mt. The user must also provide a
history cost function hc(Ct−1, Ct) that returns the historical
cost of the clustering at time t. The total quality of a cluster
sequence is then

T
X

t=1

sq(Ct, Mt)− cp ·

T
X

t=2

hc(Ct−1, Ct), (1)

where the “change parameter” cp > 0 is a user-defined pa-

rameter which trades-off between the two. As cp increases,
more and more weight is placed on matching the historical
clusters.

Given this framework, an evolutionary clustering algo-
rithm takes as input M1, . . . , Mt and produces C1, . . . , Ct.
We can compute the quality of the resulting cluster se-
quence, and hence we may compare evolutionary cluster-
ing algorithms and speak of optimal algorithms and optimal
quality.

As we stated earlier, our focus is on the online setting.
Clearly a sequence of online decisions to find C1, . . . , Ct may
not be the best offline solution to (1), but nevertheless, it is
a defensible alternative given no knowledge about the future
data. Our algorithms therefore try to find an optimal cluster
sequence by finding at each timestep t a clustering Ct that
optimizes the incremental quality

sq(Ct, Mt)− cp · hc(Ct−1, Ct). (2)

3.3 Constructing Mt from raw data
In a traditional clustering setting, the data objects are all

available at once to be clustered, and some measure of sim-
ilarity or distance between objects may be applied. This is
also true in our setting: all other timesteps may be ignored,
and local information may be used to compute similarity be-
tween objects during a particular timestep. However, there
is also another type of similarity which is unique to our set-
ting — temporal similarity. If objects recur over time, the
algorithm to cluster them during a particular timestep may
make use of their historical occurrence patterns. This type
of similarity should not be confused with similarity between
time series, as in a time series clustering problem: the ob-
ject in our universe is the point of the time series, rather
than the series itself. Below, we describe these, and how to
combine them to form the input matrix Mt.

Local information similarity. In some cases, the input
to evolutionary clustering might already be in the form of
an inter-object similarity matrix St; in other cases, we must
infer it. One common scenario involves input as a graph,
for example, a bipartite graph linking the data objects of
interest to a set of features. Then, similarity between objects
is related to the number of features they share.

Let B(t) represent this bipartite graph at time t, and let
R(t) = rj,j′ encode the number of features shared by both
objects j and j′. Then, we can say

R(t) = B(t)B′(t).

However, notice that a similarity measure based purely on
R(t) is “memoryless,” i.e., if an object fails to appear on one
snapshot, all information about its similarities with other
objects is lost completely. This is not desirable since we
wish to capture history to some extent. Therefore, we use

R(t) = (1− β) · B(t)B′(t) + β · R(t− 1), for t > 0

where the parameter β is chosen to retain enough infor-
mation on relative similarities of old objects with all other
objects, but not swamp the data from the current snapshot.
In our experiments, we set β = 0.1.

Observe that this approach incorporates an exponentially
decaying moving average of data, and could easily be mod-
ified to support other windowing techniques.



Now, we can use cosine similarity between objects to gen-
erate the local similarity matrix St:

St(j, j
′) =

〈rj , rj′〉

|rj | · |rj′ |
.

Similar steps could be followed if the underlying clustering
algorithm required a distance matrix instead of a similarity
matrix.

Temporal similarity. This is given by the standard defi-
nition of correlation of the two time series up to and includ-
ing time t0:

Corr(i, j, t0) =

Pt0
t=1(xi,t − µ(i, t))(xj,t − µ(j, t))

p

Var(i, t) · Var(j, t)
,

where xi,t represents the number of occurrences of data ob-
ject i in timestep t, and the means and variances are defined
on xi,1, . . . , xi,t0 and xj,1, . . . , xj,t0 .

Total similarity. We combine these two types of similar-
ity information into the final similarity matrix Mt, taking
the overall similarity between two objects at time t to be

Mt(i, j) = α · St(i, j) + (1− α) · Corr(i, j, t),

where α controls the contribution of correlation and tempo-
ral similarities.

4. ALGORITHMS
We now present two instantiations of our framework. Sec-

tion 4.1 describes an evolutionary version of the bottom-
up agglomerative hierarchical clustering algorithm and Sec-
tion 4.2 discusses an evolutionary version of the traditional
k-means. The above two choices were motivated by the sig-
nificant differences between the underlying clustering algo-
rithms: k-means produces a flat rather than a hierarchi-
cal clustering, implicitly requires the data to lie in a vector
space, and creates a model based on pseudo-objects that
lie in the same space as the actual objects being clustered.
These two very different approaches thus show the generality
of our framework.

4.1 Agglomerative hierarchical clustering
To develop an evolutionary hierarchical clustering, we first

describe a standard agglomerative clustering at a particular
fixed timestep t. Let M = Mt = sim(·, ·, t), U = U≤t. First,
we select the pair i, j of objects that maximizes M(i, j).
Next, we merge these two objects, creating a new object;
we also update the similarity matrix M by replacing the
rows and columns corresponding to objects i and j by their
average that represents the new object. We then repeat the
procedure, building a bottom-up binary tree T whose leaves
are the objects in U ; the tree Ct = Tt = T represents the
clustering of the objects at timestep t.

Let the internal nodes of T be labeled m1, . . . , m|U|−1,
and let simM (mi) represent the similarity of objects that
were merged to produce the internal node mi. Let in(T ) be
the set of all internal nodes of T . For an internal node m,
let mℓ be the left child of m, mr be the right child of m, and
leaf(m) be the set of leaves in the subtree rooted at m. Let
d(i, j) be the tree distance in T between nodes i and j. If
T ′, T are binary trees with leaf(T ) ⊇ leaf(T ′), then the tree
T ′|T is the projection of T ′ onto T , i.e., T ′|T is a binary tree

obtained by first removing all leaves in leaf(T )\ leaf(T ′) and
then collapsing all unary internal nodes.

We define the snapshot quality of T to be the sum of the
qualities of all merges performed to create T :

sq(T, M) =
X

m∈in(T )

simM (m).

We now define the history cost, which is the distance be-
tween two trees T, T ′ with leaf(T ) ⊇ leaf(T ′). First, we
define the distance between objects i, j ∈ leaf(T ′) to be the
squared-error distance:

dT ′,T (i, j) =
`

dT ′(i, j) − dT ′|T (i, j)
´2

(3)

Then, the distance between T and T ′ is defined to be the
average distance between all pairs of objects

hc(T ′, T ) = E
i,j∈leaf(T ′)

i6=j

(dT ′,T (i, j)). (4)

As stated earlier, the goal is to find a clustering Ct that
minimizes (2). To do this, we first note that (4) can be
rewritten as a sum of contributions from each internal node,
where the contribution covers all pairs of points for whom
that internal node is the least common ancestor. Thus,

hc(T ′, T ) = E
m∈in(T ′)

0

@ E
i∈leaf(mℓ)

j∈leaf(mr)

(dT ′,T (i, j))

1

A .

Using this reformulation of history cost, we may write the
incremental quality in (2) as

X

m∈in(T )

simM (m)−

0

@cp · E
m∈in(T )

i∈leaf(mℓ),j∈leaf(mr)

(dT ′,T (i, j))

1

A .

We propose four greedy heuristics to choose the order of
merges. Let T = Tt and T ′ = Tt−1.

In the first heuristic, we choose the merge m whose con-
tribution to this expression is maximal. In other words, pick
the merge m that maximizes

simM (m)−

0

@cp · E
i∈leaf(mℓ)

j∈leaf(mr)

(dT ′,T (i, j))

1

A . (5)

We refer to this heuristic as Squared, since it greedily mini-
mizes the squared error in Equation 3.

However, we observe that a merge with a particular squared
error may become better or worse if it is put off until later.
To wit, if two objects are far away in T ′, then perhaps we
should delay the merge until they are similarly far away in
T . However, if two objects are close in T ′ but merging them
would already make them far in T then we should encour-

age the merge despite their high cost, as delaying will only
make things worse. Based on this observation, we consider
the cost of merge based on what would change if we de-
layed the merge until the two merged subtrees became more
distant from one another (due to intermediate merges).

Thus, consider a possible merge of subtrees S1 and S2.
Performing the merge incurs a penalty for nodes that are
still too close, and a benefit for nodes that are already
too far apart. The benefit and penalty are expressed in
terms of the change in cost if either S1 or S2 participates
in another merge, and hence the elements of S1 and S2 in-
crease their average distance by 1. This penalty may be



written by taking the partial derivative of the squared cost
with respect to the distance of an element to the root. At
any point in the execution of the algorithm at time t, let
root(i) be the root of the current subtree containing i. For
i ∈ S1 and j ∈ S2, let dm

T (i, j) be the merge distance of
i and j at time t, i.e., dm

T (i, j) is the distance between i
and j at time t if S1 and S2 are merged together. Then,
dm

T (i, j) = dT (i, root(i)) + dT (j, root(j)) + 2 The benefit of
merging now is given by:

simM (m)−

0

@cp · E
i∈leaf(mℓ)

j∈leaf(mr)

(dT ′(i, j)− dm
T (i, j))

1

A . (6)

We refer to this heuristic as Linear-Internal. Notice that,
as desired, the benefit is positive when the distance in T ′ is
large, and negative otherwise. Similarly, the magnitude of
the penalty depends on the derivative of the squared error
(Equation 3).

As another heuristic, we may also observe that our deci-
sion about merging S1 with S2 may also depend on objects
that do not belong to either subtree. Assume that elements
of S1 are already too far apart from some subtree S3. Then
merging S1 with S2 may introduce additional costs down-
stream that are not apparent without looking outside the
potential merge set. In order to address this problem, we
modify (6) to penalize a merge if it increases the distance
gap (i.e., the distance at time t versus the distance at time
t−1) between elements that participate in the merge and el-
ements that do not. Similarly, we give a benefit to a merge if
it decreases the distance gap between elements in the merge
and elements not in the merge. The joint formulation is then
as follows:

simM (m) − cp · E
i∈leaf(mℓ)

j∈leaf(mr)

(dT ′(i, j) − dm
T (i, j))

+ cp · E
i∈leaf(m)
j 6∈leaf(m)

(dT ′(i, j)− dm
T (i, j)) . (7)

This heuristic considers the internal cost of merging ele-
ments i ∈ S1 and j ∈ S2, and the external cost of merging
elements i ∈ S1 ∪ S2 and j 6∈ S1 ∪ S2; therefore, we refer to
it as Linear-Both. For completeness, we also consider the
external cost alone:

simM (m) + cp · E
i∈leaf(m)
j 6∈leaf(m)

(dT ′(i, j) − dm
T (i, j)) . (8)

We refer to this final heuristic as Linear-External.

4.2 k-means clustering
Let the objects to be clustered be normalized to unit vec-

tors in the Euclidean space, i.e., the objects at time t are
given by Ut = {x1,t, . . .} where each xi,t ∈ ℜ

ℓ and the dis-
tance matrix Mt(i, j) = dist(i, j, t) = ||xi,t − xj,t||. (See, for
instance, [7].)

We begin with a description of the traditional k-means
algorithm. Let t be a fixed timestep and let U = U≤t, xi =
xi,t, M = Mt. The algorithm begins with a set of k cluster
centroids, c1, . . . , ck, with ci ∈ ℜ

ℓ; these centroids can be
initialized either randomly, or by using the results of the
previous clustering Ct−1 (which is exactly “incremental k-
means”). Let closest(j) be the set of all points that are
closest to centroid cj , i.e.,

closest(j) = {x ∈ U | j = arg min
j′=1,...,k

||cj′ − x||}.

The algorithm proceeds during several passes, during each
of which it updates each centroid based on the data elements
currently assigned to that centroid:

cj ← E
x∈closest(j)

| (x),

after which cj is normalized to have unit length. The al-
gorithm terminates after sufficiently many passes and the
clustering Ct = C is given by the set {c1, . . . , ck} of k cen-
troids.

We define the snapshot quality of a k-means clustering to
be

sq(C, M) =
X

x∈U

(1−min
c∈C
||c− x||).

(Since all points are on the unit sphere, distances are bounded
above by 1.)

We define the history cost, i.e., the distance between two
clusterings, to be

hc(C, C′) = min
f :[k]→[k]

||ci − c′f(i)||,

where f is a function that maps centroids of C to centroids
of C′. That is, the distance between two clusterings is com-
puted by matching each centroid in C to a centroid in C′

in the best possible way, and then adding the distances for
these matches.

As stated earlier, we use a greedy approximation algo-
rithm to choose the next cluster in the sequence. How-
ever, in the case of k-means, the greedy algorithm becomes
particularly easy. At time t, for a current centroid ct

j , let

ct−1
f(j) ∈ Ct−1 be the closest centroid in Ct−1. Let nt

j =

|closest(j)| be the number of points belonging to cluster j
at time t; let nt−1

f(j)
be the corresponding number for ct−1

f(j)
.

Let γ = nt
j/

“

nt
j + nt−1

f(j)

”

. Then, update ct
j as

ct
j ← (1− γ) · cp ct−1

f(j)

+γ · (1− cp) E
x∈closest(j)

(x).

In words, the new centroid ct
j lies in between the centroid

suggested by non-evolutionary k-means and its closest match
from the previous timestep, weighted by the cp and the rel-
ative sizes of these two clusters. Again, this is normalized
to unit length, and we continue with the usual k-means it-
erations.

5. EXPERIMENTS
In this Section, we perform an extensive study of our al-

gorithms under different parameter settings. We show how
distance from history can be reduced significantly while still
maintaining very high snapshot quality. For our experi-
ments, we use the collection of timestamped photo–tag pairs
from flickr.com indicating that at a given time, a certain
tag was placed on a photo. A bipartite tag-photo graph is
formed for each week, and two tags are considered to be sim-
ilar if they co-occur on the same photo at the same timestep,
as described before in Section 3. Our goal is to apply evo-
lutionary clustering algorithms to this space of tags.

k-means clustering over time. For this experiment, we
selected the most commonly occurring 5000 tags that in the
Flickr data and proceeded to study their clustering. We ran
k-means with k = 10 centroids over time t = 0 . . . 67, for



several values of cp. Recall that cp = 0 is exactly the same
as applying k-means independently to each snapshot, but
with the clusters found in the previous step as the starting
seed; it is “incremental k-means,” in other words.

Figure 1 shows the results. We observe the following:
Both the snapshot quality and the distance from history de-
crease as cp increases. In fact, incremental k-means (cp = 0)
gives the best snapshot quality and worst distance from his-
tory. This is to be expected since clustering each snapshot
independently should give the best quality performance, but
at the cost of high distance from history. Also, even low val-
ues of cp lower the distance from history significantly. For
example, even when cp is as low as 0.125, k-means incorpo-
rates history very well, which results in a significant drop in
distance from history.

Agglomerative clustering over time. We empirically
find that Linear-Both and Linear-Internal significantly out-
perform both Linear-External and Squared, so in Figure 2,
we plot only the performance of Linear-Both and Linear-
Internal over the top 2000 tags. The plots for Linear-Both
are smoother than those for Linear-Internal, for all values
of the change parameter cp. This demonstrates that the ex-
tra processing for Linear-Both improves the cluster tracking
ability of the algorithm. Also note that the distance from
history plot shows very high values for a few timesteps. We
suspect this is due to increased activity during that time-
frame; that was when Flickr “took off.” Note that this peak
also appears during k-means clustering (Figure 1(b)), rein-
forcing the idea that this is an artifact of the data.

Effect of cp on snapshot quality. Figure 3(a,b) shows
the dependence of snapshot quality on cp. The snapshot
quality values at time t are normalized by the corresponding
value for cp = 0 to remove the effects of any artifacts in the
data itself. We observe that the snapshot quality is inversely
related to cp. I.e., higher the cp, more the weight assigned to
the distance from history, and thus worse the performance
on snapshot quality.

However, while the snapshot quality decreases linearly and
is well-behaved as a function of cp for k-means, the situa-
tion is different for agglomerative clustering. The snapshot
quality takes a hit as soon as history is incorporated even
a little bit, but the degradation after that is gentler. This
suggests that k-means can accommodate more of history
without compromising the snapshot quality.

Effect of cp on distance from history. Figure 3(c,d)
shows the dependence of distance from history on the change
parameter cp. The y-axis values are normalized by the cor-
responding value for cp = 0 at that timestep to remove
any data artifacts. We see that the distance from history
is inversely related with cp. I.e., as the value of cp is in-
creased, our algorithms weigh the distance higher, and re-
ducing the distance from history becomes relatively more
important than increasing snapshot quality. Thus, higher
cp leads to lower distance from history.

While k-means gets closer to history for small values of cp,
the situation is more dramatic with agglomerative cluster-
ing. Even values of cp as small as 0.05 reduce the distance
from history in a dramatic fashion. This suggests that the
agglomerative clustering algorithm is easily influenced by
history.

6. CONCLUSIONS
We considered the problem of clustering data over time

and proposed an evolutionary clustering framework. This
framework requires that the clustering at any point in time
should be of high quality while ensuring that the clustering
does not change dramatically from one timestep to the next.
We presented two instantiations of this framework: k-means
and agglomerative hierarchical clustering. Our experiments
on Flickr tags showed that these algorithms have the desired
properties — obtaining a solution that balances both the
current and historical behavior of data.

It will be interesting to study this framework for a larger
family of clustering algorithms. It will also be interesting to
investigate tree-based clustering algorithms that construct
non-binary and weighted trees.
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(a) Snapshot quality over time (b) Distance from history, over time

Figure 1: k-means clusters over time: As the change parameter cp increases, both the snapshot quality and

the distance from history decrease. The case of cp = 0 is “incremental k-means.”
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Figure 2: Performance of agglomerative clustering over time: The plots for Linear-Both are far smoother than

those of Linear-Internal.
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Figure 3: Snapshot quality and distance from history, versus the change parameter cp.


