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ABSTRACT

The blogosphere has unique structural and temporal prop-
erties since blogs are typically used as communication media
among human individuals. In this paper, we propose a novel
technique that captures the structure and temporal dynam-
ics of blog communities. In our framework, a community is
a set of blogs that communicate with each other triggered
by some events (such as a news article). The community
is represented by its structure and temporal dynamics: a
community graph indicates how often one blog communi-
cates with another, and a community intensity indicates
the activity level of the community that varies over time.
Our method, community factorization, extracts such com-
munities from the blogosphere, where the communication
among blogs is observed as a set of subgraphs (i.e., threads
of discussion). This community extraction is formulated as
a factorization problem in the framework of constrained op-
timization, in which the objective is to best explain the ob-
served interactions in the blogosphere over time. We further
provide a scalable algorithm for computing solutions to the
constrained optimization problems. Extensive experimental
studies on both synthetic and real blog data demonstrate
that our technique is able to discover meaningful communi-
ties that are not detectable by traditional methods.
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1. INTRODUCTION

Blog is self-publishing media on the Web that has been
growing quickly and becoming more and more important.
At the time of this writing, Technorati, a well-known blog
search engine, is tracking 57 million blogs, with 1.3 million
new entries generated everyday. Furthermore, those num-
bers have doubled every 6 months for the past 3 years'.
The blogosphere, the universe of blogs, provides a lot of ap-
plications in the areas of economics and finance (e.g., virus
marketing and opinion extraction), social relations (e.g., on-
line friendships), politics (e.g., as media outlets for political
candidates), and so on. The blogosphere raises interesting
research challenges since blogs have various distinct features
compared with general Web pages.

A key difference between the blogosphere and the Web is
the lifetime of their contents (i.e., pages and links). Note
that a blog is typically used as a tool for communication
and it consists of a temporal sequence of entries. Driven by
an event (such as a news), blogs publish their entries that
refer to each other. Most of such entries quickly become
obsolete and will never be referred to by later entries. Thus,
links among blog entries have significant temporal locality,
resulting in a number of dense subgraphs (each of which is
a thread of discussion) with a short lifetime. On the other
hand, the content of the Web has longer lifetime, and it is
common that a new page refers to a very old page (such as
an authoritative page). When a new page appears with links
to an old page in a subgraph, the subgraph grows. Thus,
the structure of the subgraph gradually and incrementally
changes over time.

Given this unique structure of the blogosphere, the anal-
ysis of temporal dynamics in blog communities should be
different from the traditional web analysis. In the general
web analysis, a dense subgraph of web pages is often consid-
ered as a community, and its temporal dynamics is captured
by observing how the subgraph grows over time. However, in
the blogosphere, a dense subgraph grows only within a short
time span. The traditional analysis can only capture dynam-
ics within a short-term activity (such as a single thread of
discussion).

Alternatively, we may accumulate such links over a very
long period, generating a graph of blog that represents how
much they communicate with each other (i.e., a social net-
work of blogs). Here, we can apply similar analysis to the
Web pages since the graph is relatively static and changes
incrementally. However, it misses more detailed temporal
behavior. For instance, assume that there are two commu-

Yhttp:/ /www.sifry.com/alerts/archives/2006_11.html



nities, a politics community and an economics community,
and that one community becomes inactive while the other
community becomes active during the observation period
due to change of trends in the real world. For example, the
politics community becomes inactive after a particular po-
litical issue is addressed, then people start worrying about
its impact to economics. Some blogs are interested both in
politics and economics, moving from one community to an-
other. Since the two communities have overlap, they will be
seen as a single community in the aggregated graph.

In this paper, we propose a novel technique, community
factorization, to extract communities and their temporal
dynamics in the blogosphere. Our technique identifies the
longer-term graph structure (e.g. the politics community
and the economic community) from a series of short-term
subgraphs (i.e., threads of discussion among blogs).

In our framework, a community is a set of blogs that
communicates with each other in a synchronized manner,
i.e., communication is triggered by some events (such as a
news article), resulting in a number of short-term subgraphs.
A community has its structure, called a community graph,
which represents how much one blog communicates with an-
other. By observing a number of short-term subgraphs, we
estimate the structure of a community graph. A commu-
nity also has its temporal aspect: It can become active and
inactive over time. We introduce a community intensity to
represent the activity level of a community at a particular
time. Then the blogosphere at a particular time should be
represented as mixture of community graphs weighted by
their intensities. Our technique formulates this as a prob-
lem of non-negative matrix factorization.

Our main contributions in the paper can be summarized
as follows.

(1) We provide a new model of community that has both
structural and temporal aspects, i.e., community graphs
and community intensities, in order to handle the unique
structure of the blogosphere: a series of short-term sub-
graphs representing the communication among blogs.

(2) We pose and solve the problem of extracting communi-
ties as a factorization problem in the framework of con-
strained optimization, in which the objective is to best
explain the observed interactions in the blogosphere over
time.

Experimental results on both synthetic data and two real-
life data show that our algorithm is able to detect significant
communities with temporal dynamics while many of these
communities are not detectable by traditional methods on
aggregated blog graphs.

The rest of the paper is organized as follows. We discuss
background information and related work in Section 2. In
Section 3 we present our algorithm for community factor-
ization. In Section 4 we provide a computational procedure
to solving the community factorization problem. We show
results of experimental studies in Section 5 and give conclu-
sion and future directions in Section 6.

2. BACKGROUND AND RELATED WORK

2.1 Some Mathematical Notations

We introduce some mathematical notations that will be
used in later sections. We denote scalars by lower-case let-

ters (a,b,. .. ), matrices by capital letters (A,B,...), and ten-
sors by calligraphic letters (A,B5,...). In addition, for a ma-
trix A we use A(j) to denote the j-th column of A, and we
use both a;; and (A);; to represent the element at the i-th
row and j-th column of A. We use R to represent the set
of real numbers and R+ for non-negative real numbers. A
non-negative matrix is a matrix whose elements are in R ..
For a general matrix A we use Ay to represent A’s posi-
tive part and A_ to represent A’s negative part. That is,
Ar = (A+]|A])/2 and A = (JA]— A)/2 where both A4 and
A_ are non-negative matrices. For a tensor A € R™*"*P,
a 8-mode product® of A by a matrix U € RP*? results in
a tensor B € R™*"*9 where byjr = >, aijiuk. Infor-
mally, we can say the k-th “slice” of B is a linear combina-
tion of all “slices” of A where the coefficients are the k-th
column of U. Finally, unless stated otherwise, all matrix
(tensor) norms || - || in this paper means Frobenius norm,

ie., ||Al| = \/ Zi,j a?j-

2.2 Related Work

Community extraction and analysis has been studied ex-
tensively and is mainly studied as a graph problem. Flake
et al. [7] defined communities as dense subgraphs and pro-
posed algorithms for identifying communities by using a
maximum flow/minimum cut framework. Ino et al. [12] pro-
posed different algorithms based on ideas similar to that of
Flake. These studies extract communities from a static (ag-
gregated) graph and miss the details on the dynamic behav-
ior about the communities.

There is also a large body of work on analyzing online
social networks. Kumar et al. [13] studied the bursty evolu-
tion of links among different communities in the blogosphere
by using a Markov chain model. Gruhl et al. [9] proposed
a generative model—transmission graph—to model the in-
formation diffusion in the blogosphere in a way similar to
modeling disease-propagation in epidemic studies. Leskovec
et al. [16] studied the patterns of growth for graphs in various
fields and proposed generators that produce graphs exhibit-
ing the discovered patterns. Kumar et al. [14] analyzed the
temporal dynamics of the structures of the social networks
of Flickr and Yahoo! 360. Most of these studies, however,
only address high-level macro statistics of the online net-
works such as their size, density, degree distribution as well
as the evolution of these macro statistics. In comparison,
our algorithm can analyze the micro structure and tempo-
ral trends down to the level of individual communities.

Recently, there have been many research works on min-
ing temporal patterns from a collection of documents with
time stamps. Mei et al. [17] proposed a model that takes
time and location of blogs are into consideration and mines
spatio-temporal theme patterns by using a probabilistic ap-
proach. Wang et al. [23] proposed the Topic over Time
(TOT) model to capture temporal topical trends by extend-
ing the well-known Latent Dirichlet Allocation (LDA) model
with a temporal component. However, in these studies, doc-
uments in the collection are treated as separated observa-
tions that are generated independently and therefore the
interactions among communities are ignored.

There are some other recent studies that are closely re-

2To be consistent with the standard NMF, in our defini-
tion of 3-mode product, U is multiplied from right, which is
different from that defined in [5].



lated to our work. Backstrom et al. [1] analyzed two large-
scale time-resolved social networks and studied the dynamic
community formation. However, in their study, the commu-
nity memberships are explicitly available in the data sets.
Chakrabarti et al. [2] proposed a novel evolutionary clus-
tering algorithm in which the current clusters are affected
by the historic cluster memberships. Our algorithm has
similar effect to Chakrabarti’s algorithm, i.e., consistency
of community structures over time is emphasized. How-
ever, instead of discovering clusters at each time window as
Chakrabarti’s algorithm did, our algorithm extracts com-
munities that exist over all the time history. Falkowski et
al. [21] proposed to cluster communities obtained in each
time window in order to visualize the evolution of commu-
nities and their clustering is based on a heuristic similar-
ity between communities at different time windows. Qamra
et al. [19] proposed a community-based temporal cluster-
ing using the Chinese Restaurant Process. Unfortunately,
the inference of their model requires Gibbs sampling, which
is notoriously slow for large scale data. In [3], we applied
the high-order singular value decomposition (HOSVD) to
extract dynamic structural changes of the blogosphere for
a given query keyword. There are two weak points in that
work: First, only some high-level signatures (e.g.,hub and
authority scores) of the communities were extracted. Sec-
ond, because HOSVD is an orthogonal decomposition ([5]),
most community structures and temporal trends discovered
in [3] contain negative values and they do not map directly
to communities and temporal trends in real world.

3. COMMUNITY FACTORIZATION

In this section, we propose a new technique, called com-
munity factorization, to extract communities from the blo-
gosphere.

3.1 Basic Idea

As discussed in Section 1, we want to extract a community
as a structure that lasts for a longer time period whereas the
blogosphere consists of a number of short-term subgraphs.

We define a community as a set of blogs that communi-
cates with each other in a synchronized manner, i.e., com-
munication among the community members is triggered by
some events (such as a news article). Such communication
is observed as a number of dense subgraphs, each of which
is a short-term thread of discussion.

Finding a community is to identify its structure and tem-
poral dynamics: a community graph that represents how
much one blog communicates with another, and a commu-
nity intensity that represents the activity level of the com-
munity varying over time.

Since the communication in a community is observed as
dense subgraphs, the structure of such subgraphs should re-
flect the community graph structure. However, the structure
of a single dense subgraph does not necessarily reflect the
entire structure of a community: Since a member does not
always participate in a thread of discussion, a community
may appear as smaller pieces of disconnected subgraphs at
a particular time. Moreover, it is possible that members of
different communities participate in a single subgraph.

Our idea here is to represent a community structure as a
combination of the observed subgraphs. Then the problem
is how to find coefficients for such combination as well as
the values of the community intensity over time.

Community factorization is a technique to find such pa-
rameters that give the best explanation of the observed data:
i.e., if community graphs are combined together with their
intensities as weighting factors, the combined graph should
approximate the observed data. In the rest of this section,
we formalize this community factorization as a factorization
problem in the framework of constrained optimization.

3.2 Problem Formulation

In this section we formalize the above idea on community
factorization.

Assume that there are n blogs b; (i = 1,...,n) in the
blogosphere. The linking activity in the blogosphere is ag-
gregated as a graph structure A, € RY}*" for each time
window s (s = 1,...,t). These graphs are then stacked as
a tensor A. From the observed graph As, dense subgraphs
are extracted. These graphs are also stacked as another ten-
sor B. Given A and B, we will define a set of community
graphs {Ci} (1 =1,...,k) and community intensities {vg }
(s =1,...,t). Each graph C; € R}™" represents how blogs
communicate to each other within the community. The in-
tensity {vsl} indicates how much the I-th community con-
tributes at time s. We want to find k communities such that
their community graphs and intensities best explain the ob-
served data A.

3.2.1 Data Tensor

In our analysis, the data representing the blogosphere over
time is given as a tensor A, which we call data tensor.

We define a link from b; to b; at time s (¢ # j) when b;
publishes an entry at time s that has a hyperlink pointing
to any content of b;. These links are counted for each time
window (say a day) and represented as an adjacency matrix
As where (As);i; is the count of links from b; to b; in the
s-th time window. The adjacency matrix As can be seen as
a snapshot of activity in the blogosphere at time s, which
we call a snapshot graph.

Stacking the adjacency matrices for the n time windows
together, we have a 3-dimensional tensor

A=[A,..., A € RP™,

where the first two dimensions of A are blog indices (of citing
blogs and cited blogs), and the third dimension of A is time
window index.

3.2.2 Basis Tensor

For each snapshot graph As, we want to identify dense
subgraphs where blogs communicate with each other. We
can apply a graph partitioning algorithm, such as Shi’s nor-
malized cut [20] or Newman’s optimal modularity [18, 24].
After removing insignificant subgraphs (e.g., a subgraph with
only a couple of nodes), we have ms graphs Bs1,. .., Bem,-
We call them basis subgraphs since we will define a commu-
nity as a linear combination of these subgraphs.

For the t time windows, we have in total m = 22:1 mMs
basis subgraphs. Stacking these basis subgraphs together,
we get another 3-dimensional tensor

B= [B117.‘.,B1m17.‘.,Bt17...,Btmt] S Rixnxm7

and we call B the basis tensor. Essentially, the basis in
the basis tensor capture all significant subgraphs at all time
windows.



3.2.3 Community Graphs and Intensities

Since a community is established through communication,
i.e., basis subgraphs, let us define a community graph C;
(I=1,...,k) as alinear combination of the basis subgraphs:

Cr = Zupprv 1)
p=1

where u,; is a weight that indicates how important the p-th
basis subgraph is to the I-th community. In other words, uy,
indicates to what level a basis subgraph B, (at some time
window) belongs to the I-th community. The coefficients
{up } are parameters we will need to estimate.

At time s, we see a snapshot graph As in the data. Note
that multiple communities may have their communications
at the same time since communities behave concurrently.
Thus, multiple community graphs can affect the structure
of As. We introduce the community intensity vs; of the I-th
community at time s such that

k
Z USlCl (2)
=1

represents the observed data As;. Then our problem is for-
mulated as minimization of the following error

k

1

§||~A—ch||2 3)
=1

where a tensor C; is given as
Cr = [vuCl, ..., vaCi] € R @

Plugging Equations (1) and (4) into Equation (3), we can
show that this formulation can be posed as the optimization
problem to minimize the following objective function

1
Ji= 3l = (BxaU) xa VO (5)

subjected to U € R7**,V € R"**. In the above formula,
X3 represents the 3-mode multiplication of a tensor by a
matrix.

The solution of this optimization is given next.

3.3 Solution

3.3.1 Solution by Non-negative Matrix Factorization

For the objective function (5), because only the 3-mode
tensor product is involved, it can be equivalently written in
a matrix form as

1
Ji = §||A—BUVT||2 (6)

for A € Rf” and B € fom. In the above objective
function, A is obtained from the data tensor A in the fol-
lowing way: each column A(s) of A is obtained by stacking
the columns of the blog graph A, into an n? x 1 vector. B
is obtained in a similar way from the basis tensor . There-
fore, A and B in Equation (6) are given while our task is to
search for non-negative matrices U and V' that minimize J;.

Once we have the solutions U and V to Equation (6),
we can derive the j-th community from columns U(j) and
V(). Recall that a column U(j) of U is a vector of weights
on the basis subgraphs. Therefore, the community graph of
the j-th community is given as the 3-mode multiplication of

B by U(j). At the same time, V(j) represents the change of
interaction intensity within the j-th community over time.

With U and V' constrained to be non-negative matrices,
this optimization problem falls into the category of mon-
negative matriz factorization (NMF) [15].

NMF has many advantages over general matrix factoriza-
tion like principal component analysis (PCA). First, NMF
decomposes data into the addition of several non-negative
components. Such a nature of additive only (no subtractive)
makes results of NMF easy to interpret. For example, Lee et
al. [15] showed that, whereas traditional PCA decomposes
the pictures of human faces into eigen-faces whose physical
meaning is not clear, NMF is able to decompose the pictures
into individual human parts such as eyes, nose, and mouth.
Second, outputs of NMF can be directly used as the results
for tasks such as document clustering. In comparison, one
usually has to apply further post-processing steps, such as
k-means, to the outputs of general matrix factorization. As
demonstrated by Xu et al. [26], such post-processing steps
are nonintuitive and sometimes do not give as good perfor-
mance as directly using the outputs of NMF. Third, another
feature of NMF is that it does not require orthogonality on
outcomes. In comparison, for PCA, U and V must both
have orthogonal columns. This feature of NMF is very ap-
pealing in our case because in our solution, the columns of V'
represent the temporal trends of different communities and
it will be unreasonable to force these temporal trends to be
orthogonal to each other. Similarly, a blog may have mem-
bership in multiple communities and it will be unreasonable
to force the columns of U to be orthogonal.

3.3.2 Relation to Standard and Convex NMFs

Let us contrast our formulation against direct application
of traditional NMF formula. The original NMF minimizes
the objective function ||A — UV T||? as described in [15, 26]
(which we call the standard NMF). Another form of NMF
(which we call the convex NMF) with a different objective
function ||A— AUV 7T||? has been proposed independently by
Xu et al. [25] and Ding et al. [6]. By re-writing the objective
function for the standard NMF as ||A — TUVT||?, where T
represents the identity matrix, we can generalize a family
of NMF as ||A — XUVT|? for various X. Our community
factorization chooses B instead of A or I.

For an application in information retrieval, the standard
NMF and the convex NMF are meaningful in the following
ways. The data is a term-document matrix A where the
j-th column of A represents the terms occurred in the j-th
document and the i-th row of A represents the documents
that contain the i-th term. In the standard NMF, a concept
is represented by a column of U, i.e., by a term vector.
In the convex NMF, a concept is represented by a column
of AU, i.e., by an additive combination of the documents
themselves.

Because our data A represents graph structure, neither
the standard NMF nor the convex NMF is directly appli-
cable to our application. If we use standard NMF, then a
community comprises arbitrary links and this ignores the
relationship among links (e.g., e1 and ez point to the same
node); if we use the convex NMF, then a community must be
a combination of snapshot graphs, which is obviously incor-
rect — a snapshot graph most likely contains communica-
tions of different communities at the same time. In contrast,
in our setting, the links belonging to the same basis graph
must be assigned together to a community graph.



3.3.3 Smoothing by Regularization

It is a common technique to incorporate prior knowl-
edge into the objective function by introducing regulariza-
tion terms. For this, we generalize Equation (6) by intro-
ducing Tikhonov regularization terms (c¢f [22]) as

1 1 1
Jo = 5l|A = BUVT|? + 5l RaUI* + 5l R2VIP - (7)

where 1 and 72 are user defined parameters. In this pa-
per, we set 1 to be 1 and R; to be the identity matrix to
regularize U. For V| we apply a simple piece of intuitive
prior knowledge—the temporal trends, i.e., the column of
V', should be smooth. That is, the value difference between
two consecutive (in temporal order) elements in the same
column of V should be small. For this purpose, we set Ra
to be a difference matrix

1 -1 0 0

o -1 2 -1

0 0o -1 1
We will later use experimental studies to demonstrate the
effect of tuning 2 on the smoothness of the results. Of
course, we can also choose more sophisticate spline functions
[11] instead of the above Rz. As can be seen, in general the
matrices R1 and Rz (or any other regularization matrices)
are not necessarily non-negative.

In general, regularization would be useful to incorporate
other prior knowledge in our framework. For example, from
the profile of a blogger we may know if she is a Democrat
or Republican and this information can help determine the
community preference of the blogger. As another example,
we may be interested in communities that are very active
during a specific period of time. That is, we have some pref-
erence for certain temporal trends. However, it is out of
scope of this paper to demonstrate such general regulariza-
tion.

3.4 Some Practical Issues

3.4.1 Size of Time Windows and Basis Subgraphs

In our algorithm, we cut data into snapshots according
time windows and then apply graph partition algorithms on
each snapshot to extract the basis subgraphs. Two practi-
cal issues arise: how to choose the size of time window and
how to choose the size of basis subgraphs. As a matter of
fact, given data over enoughly long period, our algorithm
is not very sensitive to these two sizes, as long as they are
not overly large. For example, when extracting communi-
ties from the blogosphere, we can aggregate blog linkage
data by days or by weeks and for data in each time win-
dow, we can choose different numbers of basis subgraphs.
No matter what window size we choose (the window size is
not even necessarily uniform), as long as it is not too long,
the fact that members of the same community behave in
synchronization will be detected by our algorithm. For each
snapshot, even if we cut a true community into small pieces
(of course, not as small as a pair of nodes) and therefore put
them as different basis subgraphs in the basis tensor, as long
as these small pieces frequently co-occur in the data tensor,
they will be picked up together by our algorithm to recon-

struct the original true community. However, we should be
cautious about overly long time window sizes and basis sub-
graphs sizes because they aggregate out the details about
community behavior.

3.4.2 Number of Communities

Determining the right cluster number k is a difficult prob-
lem in clustering research that in many cases has no clear an-
swers. In spectral clustering, one commonly used method is

to sort the eigenvalues of the corresponding eigen-decomposition

in an decreasing order and then pick the cluster number k
where there is a large gap between the k-th and the (k+1)-th
eigenvalues. The reasoning is that the (k+1)-th eigenvalues
reflect the error introduced by keeping the top-k compo-
nents in the eigen-decomposition [8]. In our case, because
the non-linearity of NMF, we are not able to use this eigen-
decomposition argument. However, we still can try different
k’s to compare the reconstruction error and then choose one
that is reasonably small and at the same time explains data
reasonably well.

4. COMPUTATION AND COMPLEXITY

We now give an algorithm to compute a solution to the
optimization problem whose objective function is given by
Equation (7), analyze the complexity of the algorithm, and
prove the correctness of the algorithm.

4.1 [Iterative Updating Rules

To solve for U and V' in Equation (7), we start by setting
U and V to some random non-negative matrices and then
iteratively update U and V:

THEOREM 1. The following multiplicative updating rules
will converge to non-negative solutions to the optimization
problem whose objective function is given by Equation (7)

[BTAV + v1(RTR1)-Uls;
Uij  Uij T T T )
[BTBUVTV 4+ ~v1(RT R1)+Ul;

(8)

[ATBU + v2(R3 R2)-V];j
v ”ﬂ%VUTBTBUMQ(RzTRznV]m ®)

where (R R1)+, (R3 Ra2)+, (RTR1)—, and (R3 R2)— are the
non-negative matrices that represent the positive and nega-
tive parts of RT R1 and RY R, respectively.

4.2 Proof for the Updating Rules

Now we prove that the updating rules given in Equa-
tions (8) and (9) converge to the solutions to U and V in
Equation (7). We start with the general optimization on
quadratic form. Assuming we want to find the non-negative
solution ¥ to minimize the following quadratic form

I ~
Js(§) = 54" C4+d"y (10)
Ding et al. [6] showed the following lemma.

LEMMA 1 (DING). The following iterative update pro-
cedure will converge to the solution §

C_j+d_):
Yi — Yi (C-g+d-); li _‘) (11)
(Chy+di)i

Equipped with this lemma, now we prove Theorem 1.



PRrROOF OF THEOREM 1. We first rewrite the objective func-

tion as
Jo =3llA = BUVT|? 4 Zon | RaUIE + 502 - | RV |1
:%TT(AT —vUTBT)(A - BUVT)
+ %% -Tr(U"R{ RiU) + %72 -Tr(VT R} RV
:%TT(ATA —2A"BUVT + vUTBTBUVT)

1 1
+om- Tr(U"R R\U) + RE -Tr(V' R} RaV)

Defining the vectorization, u,v, of U,V by stacking the

columns of U and V, and ignoring the constant term 27r(AT A),

2
we can rewrite J2 as the quadratic form for «# and for ¥, re-

spectively. Then it can be easily shown that for @
C=m Iy ® (R R+ (V'V)® (B"B)
d = vec(—BTAV)
and for ¥
C=%-I;®(R}Rs) + (U'B"BU)® I,
d = vec(— AT BU)

where ® is the Kronecker product and vec is the vectoriza-
tion operation (see, e.g., [10]). Plugging the above forms
into Equation (11), we can get the updating rules in Equa-
tions (8) and (9). O

It is worth noting that in Equations (8) and (9) we assume
that A and B are non-negative, which is true in our applica-
tion. However, even if this assumption is not true, because
the updating rule (11) applies to general quadratic forms
(i.e., when C and d are not necessarily non-negative), we
still can derive from Equation (11) multiplicative updating
rules that are similar to (only slightly different from) Equa-
tions (8) and (9), which converge to non-negative solutions
Uand V.

4.3 Complexity Analysis

For an algorithm to be applicable to real problems in the
blogosphere, it should be scalable to hundreds of millions of
blogs. We now discuss some aspects of our proposed algo-
rithm.

First, our algorithm requires the basis tensor B to be com-
puted. This should not be a bottleneck, for there exist very
efficient algorithms for graph partitioning. As an example,
there exists a greedy algorithm for optimal modularity [4]
that is essentially linear in the size of the graph. Second,
in the updating equations (8) and (9), the most time and
memory consuming parts are BT A and BT B. However, this
should not be a serious problem either. First, both A and
B are extremely sparse matrices—the number of non-zero
elements in A is the same as the number of links in the orig-
inal data and the number of non-zero elements in B is less
than that in A (because B is a partition of A). In addi-
tion, although A and B are relatively large, BT A and BT B
are relatively small. Furthermore, we only have to compute
BT A and BT B once and then use the results throughout all
the iterations.

The algorithm is an iterative one. The overall complex-
ity is the number of iteration times the complexity of one

iteration. The number of iterations largely depends on the
numerical precision. The complexity of one iteration can
be analyzed as follows. Let [ be the number of links in the
graph. Based on the model, we have [ > m >t > k. Be-
cause of the sparsity of matrices A and B, the complexity
of ATB and BT A is O(Imt) and the complexity of BT B is
O(Im?). After computing these terms, the rest of the matrix
multiplication are all of lower dimensionality, therefore the
complexity is covered by O(lm2). Thus, the total computa-
tion complexity of one iteration is O(Im?). Therefore, our
algorithm should be scalable to large number of blogs in the
blogosphere.

S. EXPERIMENTAL STUDIES

In this section, we perform experimental studies by apply-
ing our technique to discovering communities from three sets
of data. We first use a synthetic data and controlled stud-
ies to illustrate some good properties of our technique. The
second data set is a blog data set obtained by an in-house
crawler developed at NEC Laboratories America. This data
set contains a small number of blogs among which there have
been intensive interactions over a very long period of time.
We will show that our technique discovers many interesting
communities that are not detectable by traditional meth-
ods. Finally, we study our technique by using a large scale
benchmark blog data set. On one hand we demonstrate that
our technique is scalable to such a large data set, and on the
other hand, we reveal a weak point of our technique when
the time period is extremely short.

5.1 Synthetic Data Set

We design this experiment to demonstrate that our algo-
rithm can separate two overlapped communities that have
different temporal trends. The data set contains 150 blogs
that belong to two communities. Each community contains
100 blogs and therefore there are 50 blogs that participate
in both of the two communities. We let the intensities of
interaction within the two communities vary following si-
nusoid trends with different phases (as will be revealed in
Figure 2), over 100 consecutive time windows. Figures 1(a)
and 1(b) show the adjacency matrix of the blog graph ag-
gregated over all the 100 time windows in a 3D plot and a
2D plot. Figures 1(c) and 1(d) show the adjacency matrices
of two communities discovered by applying Shi’s Normal-
ized Cut algorithm to the aggregated blog graph. As can be
seen, the community result is incorrect.

55 = 3 34 £

() Aggregated Blog Graph (b)Aggregated Blog Graph

(d) Community #2 by NC

(c) Community #1 by NC

Figure 1: Synthetic data: (a) and (b), the aggre-
gated blog graph; (c) and (d), two communities dis-
covered by the Normalized Cut algorithm



community #1 v2=1,trend #1 2 =1000, trend #1

0.8 0.3
508 06 02
- 0.4
100%
02 0.1
150 0 0
0 100 0 50 100 0 50 100
time window time window
community #2 v2=1,trend #2 v2=1000, trend #2
08 03
50 02
100 0.1
150 - 0 0
0 100 0 5 100 0 50 100

time window time window

Figure 2: Synthetic data: two communities together
with their trends extracted by using our algorithm

Figure 2 shows the two communities discovered by our
algorithm. The communities are given as weighted graphs
that have overlap in the membership (see Figure 3 for the ac-
tual weights in one of the discovered communities). Figure 2
also shows the temporal trends obtained by using 72 = 1 and
~v2 = 1000, respectively. As can be seen, both the commu-
nity structure and the temporal trends are discovered accu-
rately. Also can be seen from the figure, when ~2 is set to
1000 and therefore the regularization term has more weight,
the obtained temporal trends become smoother as expected.
When 77 is increased from 1 to 1000, the factorization er-
ror, ||A— BUVT||, did not increase much (from 252 to 259),
meaning that the introduction of the regularization term did
not cause negative effects on the factorization quality.

Figure 3: Synthetic data: soft community member-
ship

Next, we perform an experiment to demonstrate that our
algorithm is not too sensitive to the variation of window
size. We aggregate data in the previous study in the fol-
lowing way — in each step, we generate a random number
p between 1 and 3 and aggregate the next p time windows
into a single one; we repeat this process until all 100 time
windows are used. Then we apply our algorithm on this
aggregated data. Figure 4 shows the results (with trends V'
unwrapped according to the aggregation). Compared with
Figure 2, we can see that the main communities and trends
are both successfully recovered, although with a little worse
quality.

5.2 NEC Data Set

At NEC Laboratories America, we have built a focused
crawler on blogs. Given seeds of technology-related blogs,
the crawler discovered blogs that are densely connected with
the seeds, resulting in an expanded set of blogs that com-
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Figure 4: Synthetic data: two communities together
with their trends extracted by using our algorithm,
with varying time window sizes

municate with each other. The crawler then continued mon-
itoring for new entries over a long time period. From this
data set, we use 407 English blogs that have 274,679 en-
tries in 441 days (63 weeks) between July 10th in 2005 and
September 23rd in 2006. These entries are connected with
148,681 links. Expanded from the seed set on technology,
the data set actually contain roughly two groups of blogs
— one with technology focus and another with politics fo-
cus. Figure 5 shows the blog graph for this NEC data set,

Figure 5: The blog graph for the NEC data

where the layout is determined by the Pajek software using
the Kamada-Kawai algorithm. Here we can see two groups:
blogs with technology focus are placed as circles in the left
region of the graph, and blogs with politics focus are placed
as triangles in the right region of the graph.

We first try extracting communities from the aggregated
blog graph by using traditional algorithms. Given the graph
in Figure 5, we could imagine two large static communi-
ties on technology and politics. However, it is hard to see
more details as well as the temporal dynamics. By using
the Normalized Cut algorithm, we split the aggregated blog
graph into 50 clusters (communities). Then for the tempo-
ral trends of the communities, we report the number of links
among each community every day. Figure 6 shows some of
the representative results. We did not find any useful infor-
mation in this result.

We now apply our algorithm on this data set to discover
the same number of 50 communities. The number 50 has
been set rather arbitrarily, although we have tested other
numbers such as 20 and 100 and obtained similar results.
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Figure 6: Temporal trends of communities extracted
by a traditional method

In Figures 7-10, we show some representative communities
that have been discovered. To visualize each community,
we display the community graph on the left side and the
community intensity over the 441 days on the right side.

In the community graph, the size of a node and the width
of a link reflect how important that blog and the interaction
between that pair of blogs are in the community. The size
of a node is determined by the corresponding row sum in
the community graph C; as defined in Equation (1) and the
width of a link is determined by the corresponding entry
in (). In addition, to give readers a high-level idea on the
types of community members, we fix the coordinates of all
the blogs in the graphs to the same position as they are in
Figure 5 (i.e., technology blogs in the left region and politics
blogs in the right region).

In addition, we use the content of the blog entries to val-
idate our discovered communities. Note that our algorithm
depends purely on structural (hyperlink) information, not
on content of blogs. However, intuitively, a valid commu-
nity should have coherent topics discussed and consistent
vocabulary used among community members. Therefore in
this experiment, we extract top keywords from each commu-
nity to see if they form a coherent set. Keywords are ranked
with the frequency within the community divided by the one
within the entire data set.

Now we illustrate several sample communities that are
discovered by our algorithm. Please note that in almost
all the 50 communities discovered by our algorithm, we are
able to detect meaningful trends and coherent topics. In the
following discussion, we only show several more well-known
communities.

In the first community, which is shown in Figure 7, the
main community members include several well-known po-
litical blogs® that interacted heavily. This community does
not have any major spike. Instead, the intensity fluctuates
as political events happen over the whole period of study.
Note that Michelle Malkin is the name of a famous political
blogger.

The second community, which is shown in Figure 8, is
formed around an authoritative blog by David Sifry, the
CEO of one of the top blog search engines — Technorati.
The peak in the temporal trend happened on October 17,
2005. On that day, David Sifry posted in his blog site a com-

Shttp://www.washingtonmonthly.com/
http://michellemalkin.com/
http://ezraklein.typepad.com/blog/
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Figure 7: Community related to politics in general

prehensive study on the current status of the blogosphere*
which includes the number of blogs and entries tracked by
Technorati, the speed of growth of the blogosphere, the
spam blogs in the blogosphere, the comparison of blogs with
mainstream media, and so on. This report was one of the
most authoritative studies on the blogosphere and it has
been cited and discussed extensively immediately after it
had been released.

the 30-th community
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Figure 8: Community related to the status of the
blogosphere

The peak in the temporal trend of the third community,
as shown in Figure 9, happened on February 1, 2006, when

the 38-th community
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Figure 9: Community related to the Muhammad
cartoons controversy

the newspapers in some European countries republished the

*http:/ /www.sifry.com/alerts/archives/2005_10.html




controversial Muhammad cartoons and therefore triggered
widespread protests all over the world. As can be seen, the
main members of this community belong to the political
group of blogs.

The forth community, as shown in Figure 10, is related to
the hurricane Katrina, which happened at the end of Au-
gust 2005. As can be seen, due to the severe aftermath of
the hurricane and due to its high political impact, the com-
munity members are more diversified — they are distributed
all over the blogosphere.

the 47-th community
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Figure 10: Community related to hurricane Katrina

In summary, for this NEC data set, our algorithm is able
to detect meaningful communities together with their tem-
poral trends. Top representative keywords in each of the
discovered community reveal coherent topics.

5.3 Benchmark Data Set

We apply our community extraction algorithm on the
benchmark data set provided by the organizers of the WWW
2006 Workshop on the Weblogging Ecosystem. Compared
with the NEC data set, this workshop dataset is of much
larger scale. It contains 8.37 million entries from 1.43 mil-
lion different blog sites during a 3-week period between July
4th and July 24th, 2005. Because our community extrac-
tion algorithm is link-based, instead of the whole data set,
we studied the subset of blogs that contain at least one link.
By this restriction, we are able to narrow down the number
of blogs to around 141K, where the number of links among
this set of blogs are 1.62 million.

We use this data set to illustrate two points about our
algorithm. First, we show that our algorithm is scalable to
data set with large number of blogs and links. As will be
reported in the next subsection, our algorithm can handle
this large data set very efficiently by using a modest desktop
PC running Matlab codes.

More importantly, we want to use this data set to demon-
strate a weak point of our algorithm. That is, in order to
discover communities that show consistency over time, we
need data for a long period. For this benchmark data, there
are hundreds of thousands of blogs, but there are only 21
time windows. As a result the community number cannot
be too large. We set the number of community to be 10 and
run our algorithm on the benchmark data. In Figure 11 we
show two sample communities that are discovered whereas
all other eight communities follow similar patterns. As can
be seen from the figure, the temporal trends for the com-
munities are just local spikes at different time windows. In
the lower panels of the figure, we show the U vectors for the

two communities. As can be seen, each community consists
most of local basis subgraphs in the time window where the
community peaks. In other words, each community essen-
tially picks the whole snapshot graph of one time window.
The temporal trends also tell us that the snapshot graphs at
consecutive time windows have some correlation. However,
other than this trivial information, our algorithm is not able
to discover meaningful communities.
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Figure 11: Two sample communities extracted from
the benchmark data: (a) and (b), temporal trends
of the two communities; (¢) and (d), the columns of
U corresponding to the two communities

When the number of blogs n is large and the number of
time windows ¢ is small, it is difficult for our algorithm to
extract meaningful communities. Similar weak points exist
in applying NMFs to traditional information retrieval area.
That is, when the number of documents is too few, a better
explanation to all the documents is to take each individual
document as a concept. In our case, instead of individual
groups of blogs that form interactive communities, a better
explanation to the observed data (in terms of low reconstruc-
tion error) is to take some snapshot graphs as communities.
In conclusion, our method should be applied to data over
a longer time period (i.e., t/n is large), and the traditional
approach with aggregated graphs should be applied to data
within a short time period (i.e., t/n is small).

5.4 Running Time

In Table 1 we report the running time of our algorithm
on the three data sets. Our algorithm is implemented in
Matlab and runs on a PC of Pentium IV processor with 2G
Hz CPU and 2GB memory. The codes are implemented in
Matlab. The reported running time is in second per itera-
tion. When the criterion for convergence is set to be that
|J2(t) — J2(t — 1)| < 1076, the algorithm can converge with
in 1000 iterations for all the three cases. As can be seen
from the running time, our algorithm scales nicely to the
size of the data both in terms of the number of blogs and
the number of links.

Table 1: Running time for the 3 data sets

Data Set Blog Link Window Running
Name Count Count Count Time (sec)
Synthetic 150 207,709 100 1.23
NEC 407 148,681 441 0.86
Benchmark | 141,046 1,622,428 21 1.66




6. CONCLUSION AND FUTURE WORK

The blogosphere has a unique structure: a series of short-

term subgraphs representing the communication among blogs.

In this paper, we proposed a novel technique that capture
the structure and temporal dynamics of communities from
the blogosphere. In our framework, a community is a set of
blogs that communicates with each other in a synchronized
manner, triggered by some events (such as a news article).
The community is represented by a community graph, which
indicates how often one blog communicates with another,
and community intensities, which indicate the activity level
of the community over time. Our method, community fac-
torization, extracts such communities from the communica-
tion among blogs that is observed as subgraphs (i.e., threads
of discussion). We formalized this as a factorization problem
in the framework of constrained optimization.

Experimental studies were conducted on both synthetic
and real blog data. With synthetic data, we demonstrated
that our technique is able to identify two overlapping com-
munities that have different temporal dynamics. In NEC
data set, our technique was able to discover meaningful
communities that are not detectable by traditional meth-
ods. Through the WWW Workshop benchmark data set, we
pointed out that our technique is not appropriate for data
with a very short time period. Finally, we demonstrated
that our algorithm scales nicely to handle a large number of
blogs.

We plan to extend our research in several directions. First,
the technique proposed in this paper is based on link anal-
ysis only and not combined with content analysis. We plan
to incorporate content information into our framework by
extending the tensors with keywords as one more dimen-
sion so that it can capture multiple topics of interaction
among blogs. Second, our technique adopted Shi et al.’s
normalized cut algorithm for partitioning local blog graphs
as undirected graphs. We are also interested in using di-
rected graph partitioning algorithms since the direction of
links in the blogosphere is important.
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