
Generalising MixesClaudia D��az1 and Andrei Serjantov21 K.U.Leuven ESAT-COSICKasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgiumlaudia.diaz�esat.kuleuven.a.behttp://www.esat.kuleuven.a.be/osi/&2 University of Cambridge Computer LaboratoryCambridge CB3 0FD, United KingdomAndrei.Serjantov�l.am.a.uk http://www.l.am.a.uk/ aas23/Abstrat. In this paper we present a generalised framework for express-ing bathing strategies of a mix. First, we note that existing mixes anbe represented as funtions from the number of messages in the mix tothe fration of messages to be ushed.We then show how to express existing mixes in the framework, and thensuggest other mixes whih arise out of that framework. We note thatthese annot be expressed as pool mixes. In partiular, we all binomialmix a timed pool mix that tosses oins and uses a probability funtionthat depends on the number of messages inside the mix at the time ofushing. We disuss the properties of this mix.1 IntrodutionMany modern anonymity systems use the notion of a mix as introdued in[Cha81℄. Chaum's original system used a very simple threshold mix, but overthe last few years many di�erent mixes have been proposed in the literature[Cot94,Jer00,KEB98℄.One of the most important parameters of a mix is its bathing strategy. Intu-itively, the bathing strategy of a mix is the algorithm for olleting the messagesto be mixed together and forwarding them to the next hop. Naturally, this in-uenes both the anonymity and message delay properties of the mix.In the past the bathing strategies of mixes were often desribed by giving thealgorithm whih determines when to ush the mix and how many (and whih)messages to forward during the ush. In this paper, we present an simple formal-ism for desribing mixes, whih also enables a quik (qualitative) omparison. Inthe next setion we show how existing mixes are desribed. In Setion 4, we showthat there are funtions whih express other mixes with interesting properties.We then fous on this mix, extend it and examine its properties.2 Comparing Bathing Strategies of MixesLet us examine existing mixes. There are several whih we are familiar with fromthe literature (see survey in [SDS02℄): threshold mix, timed mix, timed pool mix



and the timed dynami pool (Cottrell) mix 1. We now seek to express mixes,just as an implementer would, as funtions P : N ! [0; 1℄ from the numberof messages inside the mix to the fration of messages to be ushed. We nownote that just this funtion is not enough to express the bathing strategy of amix. We also need to speify how often we would exeute this funtion and ushmessages. Note that in timed mixes, this is just amount to the period betweenmix ushes. The variable n represents the number of messages ontained in themix at the time of ushing.Figure 1 presents:{ Timed mix (a): This mix ushes all the messages it ontains at the timeof ushing. Therefore, the perentage of sent messages is always 100%, i.e.,P (n) = 1.{ Timed pool mix (b): This mix keeps a onstant number of messages, Np,in the pool (Np = 20 in this example), and ushes periodially . If the mixontains no more than Np messages at the time of ushing, it will not outputany message. When it ontains more, it outputs n�Np messages, that meansthat the perentage of sent messages an be expressed as: P (n) = 1�Np=n.{ Timed dynami pool mix (Cottrell mix) (): This mix outputs messages atthe timeout only when the number of messages is greater than a thresholdNp. The number of output messages is a fration, f , of the di�erene betweenthe number of messages inside the mix and the value of the threshold of thepool, f(n � Np) (f = 0:7 and Np = 20 in the example). In the �gure, thefuntion that represents the perentage of sent messages is P (n) = f(1 �Np=n).{ Threshold pool mix (d): We have noted above that eah mix is a funtion,together with a time period (T ) whih spei�es how often we ush the mix.If we set T = 0 and let the funtion P (n) = 0 everywhere apart from thethreshold, we an express threshold mixes as well as timed mixes. Thus,suh a mix mixes are represented by a single dot in the �gure (at (N; 1) fora threshold mix, or (N ,1 �Np=N) for a pool mix with pool of Np) as it isshown in Figure 1 (d). The mix shown in the �gure is a threshold pool mixwith threshold N = 100 and pool size Np = 50.Note that the reason we have been able to express all the above mixes in thisframework is that they are stateless, i.e. the fration (and therefore the number)of messages to be ushed depends only on the number of messages in the mix,but not, say, on the number of messages ushed during the previous round.Before proeeding to examine new P (N) funtions, we need to understandthe e�et they have on the anonymity of a mix.1 The urrent implementation of Mixmaster uses a slightly di�erent algorithm: itushes a �xed fration of the total number of messages in the mix, given that thenumber of messages that stay in the pool is larger than a minimum; otherwise, itdoes not send any message.
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() Timed dynami pool mix (d) Threshold pool mixFig. 1. Representing mixes as funtions from the number of messages inside the mixto the fration of messages to be ushed



3 Anonymity set sizeWe know from [SD02,DSCP02℄ that the anonymity set size an be omputedusing the entropy of the probability distribution that relates inoming and out-going messages. This metri depends on two parameters: the number of messagesmixed and the value of the distribution of probabilities of an outgoing messagemathing an input. In the absene of a priori or ontextual information aboutthe inputs, this distribution is given by the probability of a message leaving ineah round. Therefore, the more messages we mix, the more anonymity; andthe more evenly distributed the probability of a message leaving in round r, themore anonymity (i.e., we gain anonymity when it is more diÆult to predit thenumber of rounds that a message stays in the pool).Let us fous on timed pool mixes. The funtion represented in the Figure1(b) gives us the probability of a message leaving in the urrent round as afuntion of the number of messages ontained in the mix. Let nr be the number ofmessages ontained in the mix at round r, and P (nr) (the represented funtion)the probability of a message leaving the mix at round r.The probability of a message that arrived at round i leaving at round r isgiven by: prob(i) = P (nr) r�1Yj=i(1� P (nj)) :That is, the fat that the message did not leave the mix in the rounds i::(r�1)and it leaves in round r. Note that when P (nj) grows, the prob(i) values areless evenly distributed, and the entropy (and, onsequently, the anonymity setsize) dereases2. This is not a problem if the number of messages mixed at eahround is large, but when n is lose to the pool size, the anonymity may be toosmall. We propose a solution to this problem in Setion 5.4 Generalising MixesThe natural way to proeed is to say that a mix is an arbitrary funtion from thenumber of messages inside the mix to the perentage of messages to be ushed.What does this gain us?Throughout the mix literature, a tradeo� between message delay and anonymityan learly be seen. Indeed, as Serjantov and Danezis showed in [SD02℄, the poolmix gains more anonymity from higher average delay as ompared to the thresh-old mix. Expressing the mix bathing strategy as a funtion allows us to de�nean arbitrary tradeo� between anonymity and message delay. We now go on toexamine a partiular mix funtion.2 Note that this is entirely onsistent with our intuition: the higher the fration ofmessages we ush eah round, the smaller the anonymity. Or equivalently, the moremessages we delay during eah round, the higher the anonymity.



5 Proposed designSuppose that we woudl like to develop a mix whih has the properties in lowand high traÆ onditions3 as a partiular timed dynami pool mix, but whihgains more anonymity for a longer delay in low traÆ onditions. This is easilypossible { all one needs to do is to invent a suitable funtion.Note that the numbers are given on order to illustrate qualitative examples.The values of the funtions should be optimised for the requirements of a par-tiular system, depending on the traÆ load, number of users, tolerated delay,minimum required anonymity, et.In Figure 2 we show a omparison between the timed dynami pool mixand our new mix, whih is de�ned by a suitable funtion (normal umulativedistribution funtion).
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Fig. 2. Timed dynami pool mix vs a mix based on the normal umulative distributionfuntionThe normal umulative distribution funtion has desirable properties. Itgrows smoothly at low n, providing a larger anonymity when the mix ontainsfew messages. This is ahieved at the ost of inreasing the delay in low traÆ3 Or, more pragmatially, the same size of the pool and the same fration of messagesto be sent out when there is lots of traÆ



onditions. On the other hand, when the number of mixed messages is largeenough, the umulative funtion improves the delay over the Cottrell funtion.6 Randomising Mixes: The Binomial MixIn this setion we add randomness to a mix. This has the e�et of hiding thenumber of messages whih are in the mix at the time it ushes.Suppose we treat the result of the funtion P (n) not as a fration, but asa probability. We an then use it as the bias of a oin, whih we toss for eahmessage inside the mix. A head indiates that this message should be sent outduring this round, a tail { that it should remain in the mix.Let s be the variable that represents the number of messages sent by the mixwhen it ushes. On average, s = nP (n); but s follows a binomial distribution,whih has a variane equal to np(1 � p), where p is the result of the funtionP (n). The property of the mix is that by observing s the attaker does notobtain muh information about the value of n. The e�ort required to estimaten is analysed in Setion 6.1.Due to this property, we all this proposed mix binomial mix.6.1 Guessing the number of messages ontained in the mixWe analyse the information obtained by a passive attaker that observes theinput and output of the binomial mix. Then we explain how the attaker anombine the information obtained in multiple observations and give an estimateof the number of rounds needed to aurately guess n.Observation of one output. When the attaker is allowed to observe onlyone output, the only available information he has is s. We have onstruted asimulator that alulates the probabilities of every value of n after observingthat the mix outputs s messages.Given n, we an alulate the probability of sending s messages with thefollowing formula, aording to the binomial distribution [Fel50℄:p(sjn) = n!s!(n� s)!ps(1� p)n�s ; (1)where p is the result of the funtion P (n).But the attaker does not know n, he has to estimate n from the observa-tion of s. Bayes' rule an be applied to reverse the formula and ompute theprobability of eah n4. p(njs) = p(sjn)PNmaxi=s p(ijn) : (2)4 Given that the attaker does not have any a priori information he must assume,initially, that any possible value of n between s and Nmax (maximum apaity ofthe mix) is equally probable.



The attak is implemented as follows: the attaker observes s and assumesthat the n that generated this output is at least s and at most Nmax. In orderto ompute the probability of n taking a partiular value, say 100, we applyequation 1 using this value for n, and then substitute the result in equation 2.We also need to alulate the result of equation 1 for this n and every possiblevalue of s.Using this formula the attaker an obtain the probability of eah value ofn given than the mix has sent s messages. The pratial results show that theattaker annot guess the value of n with probability greater than 15%. We havealso alulated the 95% on�dene interval and found that, typially, it ontainsbetween 12 and 30 di�erent values of n. This is due to the large value of thevariane of a binomial distribution.Number of rounds needed to estimate n with 95% on�dene. We haveimplemented a passive attak in the simulator in order to have an estimate onthe number of rounds required by the attaker to guess with probability 95%the orret value of n.Given that every round is independent from the others, we an multiply theresults of every round, taking are of shifting the terms we are multiplying asmany positions as the di�erene between the n of the �rst round of attak, n0,and the urrent nr. This di�erene is known to the attaker beause he an ountthe inoming and outgoing messages. The details of this algorithm an be foundin Appendix A.The attaker, aording to the results of the simulations, needs typially loseto 200 rounds of observation. This number ould be improved by hoosing a moreappropriate P(n)-funtion. In terms of time, he will have to wait the number ofrounds times T (timeout of the mix).6.2 The blending attak on the binomial mixAs we have seen in the previous setion, a passive attaker needs a substantialnumber of rounds of observation in order to aurately guess the urrent n.Therefore, it does not seem to be pratial to deploy a blending attak using thesame strategy as with lassial pool mixes.In this setion we desribe �rst the attak model, then the steps needed inorder to deploy a blending attak and, �nally, we analyse the results.Attak model. The attaker we are onsidering ontrols all ommuniationlines (global attaker). He an not only observe all inoming and outgoing mes-sages, but also delay the messages of the users and insert messages (ative at-taker). The attaker does not have aess to the ontents of the mix, i.e., themix is a blak box for the attaker (external attaker). In order to test thee�etiveness of the design, we onsider a setup with only one mix. whih



The ooding strategy. The goal of the attaker is to trae a partiular message(the target message) that is sent by a user to the mix. The ations of the attakeran be divided into two phases: the emptying phase and the ushing phase.The emptying phase. During this stage of the attak, the goal of the attakeris to remove all unknown messages ontained in the pool, while preventing newunknown messages from going into the mix. In order to fore the mix to sendout as many unknown messages as possible in eah round, the attaker sendsto the mix NT messages, where NT is the minimum number of messages thatguarantees that the P (n) funtion takes its maximum value, pmax. If the attakerwants to empty the mix with probability 1 � �, then he will have to ood themix for r rounds.The formula that an be used to estimate the number of rounds needed toush all unknown messages with probability 1� � is:(1� (1� pmax)r)n � 1� � : (3)Where n is the number of messages ontained in the pool. If the attakerdoes not have any information about n he will have to assume n = Nmax (worstase senario for the attaker).Cost of emptying the mix. We ompute the ost, CE , of this phase of the attaktaking into aount the following:{ Number of messages the attaker has to send to the mix.{ Time needed to omplete the operation.{ Number of messages the attaker has to delay.Number of messages the attaker has to send to the mix. In the �rst round theattaker has to send NT messages, to ensure that the funtion P (n) takes itsmaximum value, pmax, and therefore the probability of eah message leaving ismaximum. In the following rounds, it is enough to send as many messages asthe mix outputs. Note that if n+NT is bigger than Nmax, then some messageswill be dropped and the mix will ontain Nmax messages.Thus, for the �rst round the attaker sends NT messages, and the follow-ing rounds he sends (NT + n)pmax messages on average. The total number ofmessages sent during this proess is:Number of messages sent = NT + (r � 1)(NT + n)pmax : (4)Time needed to omplete the operation. This is a timed mix, so the attaker hasto wait T units of time for eah round. Therefore, the total time needed is rTtime units.Number of messages the attaker has to delay. Assuming that the users generatemessages following a Poisson distribution with parameter �, the attaker has todelay, in average, �rT messages.



The ushing phase. One the mix has been emptied of unknown messages, theattaker sends the target message to the mix. Now, he has to keep on delayingother inoming unknown messages and also send messages to make the mix ushthe target.The number of rounds needed to ush the message is, on average, r = 1pmaxThe ost of this phase is omputed aording to the previous parameters.Number of messages the attaker has to send to the mix. Assuming that theattaker arries out this phase of the attak immediately after the emptyingphase, the number of messages needed in the �rst round is (NT + n � 1)pmax,and in the following ones (NT + n)pmax. The total number of messages is:pmax(NT + n� 1 + (r � 1)(NT + n)) (5)The other two parameters are omputed in the same way as in the emptyingphase, taking into aount the new value of r.Guessing the number of messages within the mix with an ative attakThe attaker an use the ooding strategy (emptying phase only) in order todetermine the number of messages ontained in the pool of the mix. This attakis muh faster than the one desribed in Setion 6.1, although it requires moree�ort from the attaker.Probabilisti suess. Note that, due to the probabilisti nature of the bi-nomial mix, the attaker only sueeds with probability 1 � �. Therefore, withprobability � there is at least one unknown message in the mix. In this parti-ular ase, the attaker an detet his failure if during the ushing phase morethan one unknown message leaves the mix in the same round (and there is nodummy traÆ poliy), whih happens with probability p2max for the ase of oneunknown message staying during the emptying phase (the most probable ase).With probability pmax(1 � pmax) the target message leaves the mix alone, andthe attak is suessful. Also with probability pmax(1�pmax), the other unknownmessage leaves the mix �rst, and the attaker follows a message that is not thetarget without notiing. Finally, with probability (1 � pmax)2, both messagesstay in the pool and the situation is repeated in the next round.6.3 Average delay of a message.Assuming that the population of users generate messages following a Poissondistribution with mean � messages per time unit, and given that the mix ushesmessages every T time units, the average number of messages going into themix per round is �T . Assuming that the mix outputs as many messages as itgets (that is, the P (n) funtion and Nmax are designed in suh a way that theprobability of dropping messages beause of a lak of spae in the mix is verysmall), the average number of messages sent per round is s = �T . We know that



s = nP (n), therefore, we have to �nd n suh that nP (n) = �T . This numberan be found reursively.Given that the average number of rounds that a message spends in the mixis 1P (n) , where n has to be omputed as stated above, the average delay of amessage going through the binomial mix is TP (n) time units.6.4 Additional measure: Timestamps.Additional measures, like timestamps, an be used in order to prevent the blend-ing attak. This idea has already been proposed by Kesdogan et al. in [KEB98℄for the Stop-and-Go (SG) mixes.SG mixes work in a di�erent way than pool mixes: users, after hoosingthe path of mixes, generate a timestamp for eah mix in the path that followsan exponential distribution. The message is enrypted several times, eah timewith the key of one of the mixes. One an SG mix has reeived and derypted amessage, it keeps it in the memory a period of time equal to the delay indiatedby the user. Then, it forwards the message to the next mix.Link Timestamps. In our design, the user annot generate timestamps forevery mix in the path, beause he does not know how long the message is goingto be delayed in eah mix. Therefore, we propose the use of link timestamps: theuser generates a timestamp for the �rst mix and, in eah of the following hops,the mix puts the timestamp on the message one the message has been takenfrom the pool and is going to be sent.When a mix reeives a timestamp that is too old, it drops the message. Withthis poliy, the attaker has limited time to delay messages: if he delays thetarget message too long it will be dropped, and the attaker will not have anymeans to dislose the reipient of the message.Using this measure prevents the attaker from delaying the target messageat his will, and the attaker does not have means to deploy a blending attak(unless he knows that the message is going to be sent by the user in advane, andan empty the mix before). Therefore, in this senario the binomial mix providesprotetion against the blending attak. Furthermore, the anonymity provided bythe binomial mix will not be threatened by a hange in the traÆ load while thishange, if large enough, an a�et the anonymity provided by a SG mix (sineSG mixes only delay messages).Drawbaks. The use of timestamps presents pratial problems, and this isthe reason why we have not inluded them in the basi design. The most seriousproblem is the synhronisation of loks. If the di�erent omputers (both usersand mixes) have a deviation in their loks, many valid messages are dropped.All entities ould be synhronised using a time server, but then the seurity ofthis time server beomes an issue.



Also, timestamps are not so e�etive if we are dealing with orrupted mixes:a orrupted mix an put a fake timestamp on a message and give the attakerextra time to empty the following mix in the path.7 ConlusionsWe have proposed a framework with whih we an generalize lassial pool mixes.This model seems to be a powerful tool that gives us a new understandingof the bathing strategies implemented by existing mixes. Also, new strategiesthat improve existing designs arise from the framework. We have proposed aumulative distribution funtion in order to have a tailored anonymity/delaytradeo� that adapts to the utuations in the traÆ load.We have suggested a simple and intuitive way to deal with the anonymity setsize provided by a mix, in whih the distribution of probabilities of the numberof rounds that a message stays in the pool is a funtion of P (n).We have added randomness to the ushing algorithm, in order to hide thenumber of messages ontained in the mix. We have analyzed the e�ort requiredby the attaker in order to deploy passive and ative attaks. The suess ofthese attaks beomes probabilisti in ontrast with lassial pool mix designs.We suggest a timestamp strategy as ountermeasure to limit the power ofan ative attaker. If suh an strategy an be seurely implemented, the n � 1attak beomes no longer possible.8 Future workSome of the topis we an identify as deserving further researh are:{ The analysis of the possibilities of the framework. We have proposed theumulative distribution funtion as an alternative to existing mix algorithms.Other funtions with interesting properties may arise from the study of theframework.{ Thorough analysis of the properties of the proposed binomial mix. We havepointed out qualitative properties of this mix. A more in-depth analysis andtests are needed in order to have a full understanding of the design andits possibilities. A method for analysing timed mixes is proposed in [SN03℄,whih needs to be generalised to aount for the binomial mix. We wouldalso like to study the impliations of the fat that mixes hide the number ofmessages that are inside the pool.{ Study the properties of the proposed mix when dummy traÆ poliies areimplemented.AknowledgementsClaudia D��az is funded by a researh grant of the K.U.Leuven. This work wasalso partially supported by the IWT STWW projet on Anonymity and Privay



in Eletroni Servies (APES), and by the Conerted Researh Ation (GOA)Me�sto-2000/06 of the Flemish Government. Andrei Serjantov aknowledges thesupport of EPSRC grant GRN24872 Wide Area Programming and EC grantPEPITO.A Algorithm used to ombine the results of di�erentobservations of the output.The results of two observations are independent, given that the result of theBernoulli trials do not depend on previous rounds.Notation:{ nj is the number of messages ontained in the mix at the j-th round ofattak (being n0 -the number of messages ontained in the mix when theattak starts- the number the attaker is trying to guess).{ sj is the number of messages sent by the mis in the j-th round of attak.This number is a funtion of ni.{ fj is the number of messages that arrive to the mix during the j-th round.We take into aount fj starting from j = 1.{ shift is the di�erene between nj and n0 (shift = nj � n0). The attakerknows this number beause he observes the number of inoming and outgoingmessages at eah round; e.g., at round 1 shift = n1 � n0 = f1 � s0. Thisnumber an be either positive or negative.{ P is an array that ontains the result of the algorithm in the present round,taking into aount all the previous rounds. The array hasNmax+1 elements.P [i℄ ontains the probability of n0 = i.{ A is an array that ontains the probabilities of the values of n for this round.The array has Nmax + 1 elements. A[i℄ ontains the probability of nj = i,where j is the number of the round.The algorithm at the j-th round is as follows:shift > 0 In this ase we know that nj > n0. In order to be able to multiply theresult of this round to the previous ones (whih have the maximum value loseto n0), we have to shift the values of A shift positions to the left. This way, theestimation of nj an be used to improve our knowledge of n0 (n0 = nj � shift).The values we lose at the left of the array are not important, beause thisorresponds to impossible values of nj : given that n0 � 0, this implies thatnj � shift. On the other hand, at the right side of the array, we have to introduenumbers. The solution is to propagate the value of Nmax. This makes sensebeause in ase n0 � Nmax�shift then nj = Nmax, given that one the apaityof the mix (Nmax) has been exeeded messages are dropped.After shifting the values of the A array, we have to resale them in order tohave a distribution of probabilities (the sum of all values must be 1).The ode in Java is as follows:



if (shift > 0) {for (int i=0; i<=N_MAX-shift; i++)A[i℄ = A[i+shift℄;for (int i=N_MAX+1-shift; i<=N_MAX; i++)A[i℄ = A[N_MAX℄;// resaling Adouble sum = 0.0;for (int i=0; i<=N_MAX; i++) sum = sum + A[i℄;for (int i=0; i<=N_MAX; i++) A[i℄ = A[i℄/sum;}shift < 0 This is the ase in whih in the present round nj < n0. We haveto shift the values of the A array to the right by shift positions. We lose thelast shift values, whih are, again, impossible values of nj , beause n0 � Nmaximplies nj � Nmax�jshiftj. At the left of the array we have to introdue valuesfrom the positions 0 to jshiftj � 1. In this ase the value we introdue is 0: weknow that nj � 0, therefore n0 � jshiftj (note that n0 = nj + jshiftj). Thisimplies that any value of n0 smaller than jshiftj is impossible.Again, as in the previous ase, we must resale the values of A in order toobtain the new distribution.The ode in Java is as follows:if (shift < 0) {for (int i=N_MAX; i>=-shift; i--)A[i℄ = A[i+shift℄;for (int i=0; i<-shift; i++)A[i℄ = 0.0;// resaling Adouble sum = 0.0;for (int i=0; i<=N_MAX; i++) sum = sum + A[i℄;for (int i=0; i<=N_MAX; i++) A[i℄ = A[i℄/sum;}shift = 0 In this ase n0 = nj , and we an multiply both arrays (P and A)without hanging A.Multiply P and A. After shifting and resaling the elements of the array A, wean multiply both arrays element by element. After this multipliation we haveto resale the result and we obtain the distribution of probabilities of the valueof n0 inluding the j-th round.The ode in Java is:// multiply probabilitiesdouble sum = 0.0;



for (int i=0; i<=N_MAX; i++) {P[i℄ = P[i℄*A[i℄;sum = sum + P[i℄;}// resalingfor (int i=0; i<=N_MAX; i++) P[i℄ = P[i℄/sum;At this point, the array P ontains the urrent distribution of probabilities,being P [i℄ the probability of n0 = i, and taking into aount the informationobtained during all the rounds of attak.Referenes[Cha81℄ David Chaum. Untraeable eletroni mail, return addresses and digitalpseudonyms. Communiations of the ACM, 24(2):84{88, 1981.[Cot94℄ L. Cottrell. Mixmaster and remailer attaks, 1994.http://www.obsura.om/ loki/remailer/remailer-essay.html.[DSCP02℄ Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Preneel. Towardsmeasuring anonymity. In Paul Syverson and Roger Dingledine, editors, Pri-vay Enhaning Tehnologies, volume 2482 of LNCS, pages 54{68, San Fran-iso, CA, April 2002.http://petworkshop.org/2002/program.html.[Fel50℄ William Feller. An introdution to probability theory and its appliations.Wiley, 1950.[Jer00℄ Anja Jerihow. Generalisation and Seurity Improvement of Mix-mediatedAnonymous Communiation. PhD thesis, Tehnishen Universitat Dresden,2000.[KEB98℄ D. Kesdogan, J. Egner, and R. Bushkes. Stop-and-go-MIXes providingprobabilisti anonymity in an open system. In Proeedings of the Interna-tional Information Hiding Workshop, April 1998.[SD02℄ Andrei Serjantov and George Danezis. Towards an information theoretimetri for anonymity. In Paul Syverson and Roger Dingledine, editors, Pri-vay Enhaning Tehnologies, volume 2482 of LNCS, pages 41{53, San Fran-iso, CA, April 2002.http://petworkshop.org/2002/program.html.[SDS02℄ Andrei Serjantov, Roger Dingledine, and Paul Syverson. From a trikle to aood: Ative attaks on several mix types. In 5th Workshop on InformationHiding, volume 2578 of LNCS, Otober 2002.[SN03℄ Andrei Serjantov and Rihard E. Newman. On the anonymity of timedpool mixes. In Workshop on Privay and Anonymity in Networked and Dis-tributed Systems (18th IFIP International Information Seurity Conferene),Athens, Greee, May 2003.


