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t. In this paper we present a generalised framework for express-ing bat
hing strategies of a mix. First, we note that existing mixes 
anbe represented as fun
tions from the number of messages in the mix tothe fra
tion of messages to be 
ushed.We then show how to express existing mixes in the framework, and thensuggest other mixes whi
h arise out of that framework. We note thatthese 
annot be expressed as pool mixes. In parti
ular, we 
all binomialmix a timed pool mix that tosses 
oins and uses a probability fun
tionthat depends on the number of messages inside the mix at the time of
ushing. We dis
uss the properties of this mix.1 Introdu
tionMany modern anonymity systems use the notion of a mix as introdu
ed in[Cha81℄. Chaum's original system used a very simple threshold mix, but overthe last few years many di�erent mixes have been proposed in the literature[Cot94,Jer00,KEB98℄.One of the most important parameters of a mix is its bat
hing strategy. Intu-itively, the bat
hing strategy of a mix is the algorithm for 
olle
ting the messagesto be mixed together and forwarding them to the next hop. Naturally, this in-
uen
es both the anonymity and message delay properties of the mix.In the past the bat
hing strategies of mixes were often des
ribed by giving thealgorithm whi
h determines when to 
ush the mix and how many (and whi
h)messages to forward during the 
ush. In this paper, we present an simple formal-ism for des
ribing mixes, whi
h also enables a qui
k (qualitative) 
omparison. Inthe next se
tion we show how existing mixes are des
ribed. In Se
tion 4, we showthat there are fun
tions whi
h express other mixes with interesting properties.We then fo
us on this mix, extend it and examine its properties.2 Comparing Bat
hing Strategies of MixesLet us examine existing mixes. There are several whi
h we are familiar with fromthe literature (see survey in [SDS02℄): threshold mix, timed mix, timed pool mix



and the timed dynami
 pool (Cottrell) mix 1. We now seek to express mixes,just as an implementer would, as fun
tions P : N ! [0; 1℄ from the numberof messages inside the mix to the fra
tion of messages to be 
ushed. We nownote that just this fun
tion is not enough to express the bat
hing strategy of amix. We also need to spe
ify how often we would exe
ute this fun
tion and 
ushmessages. Note that in timed mixes, this is just amount to the period betweenmix 
ushes. The variable n represents the number of messages 
ontained in themix at the time of 
ushing.Figure 1 presents:{ Timed mix (a): This mix 
ushes all the messages it 
ontains at the timeof 
ushing. Therefore, the per
entage of sent messages is always 100%, i.e.,P (n) = 1.{ Timed pool mix (b): This mix keeps a 
onstant number of messages, Np,in the pool (Np = 20 in this example), and 
ushes periodi
ally . If the mix
ontains no more than Np messages at the time of 
ushing, it will not outputany message. When it 
ontains more, it outputs n�Np messages, that meansthat the per
entage of sent messages 
an be expressed as: P (n) = 1�Np=n.{ Timed dynami
 pool mix (Cottrell mix) (
): This mix outputs messages atthe timeout only when the number of messages is greater than a thresholdNp. The number of output messages is a fra
tion, f , of the di�eren
e betweenthe number of messages inside the mix and the value of the threshold of thepool, f(n � Np) (f = 0:7 and Np = 20 in the example). In the �gure, thefun
tion that represents the per
entage of sent messages is P (n) = f(1 �Np=n).{ Threshold pool mix (d): We have noted above that ea
h mix is a fun
tion,together with a time period (T ) whi
h spe
i�es how often we 
ush the mix.If we set T = 0 and let the fun
tion P (n) = 0 everywhere apart from thethreshold, we 
an express threshold mixes as well as timed mixes. Thus,su
h a mix mixes are represented by a single dot in the �gure (at (N; 1) fora threshold mix, or (N ,1 �Np=N) for a pool mix with pool of Np) as it isshown in Figure 1 (d). The mix shown in the �gure is a threshold pool mixwith threshold N = 100 and pool size Np = 50.Note that the reason we have been able to express all the above mixes in thisframework is that they are stateless, i.e. the fra
tion (and therefore the number)of messages to be 
ushed depends only on the number of messages in the mix,but not, say, on the number of messages 
ushed during the previous round.Before pro
eeding to examine new P (N) fun
tions, we need to understandthe e�e
t they have on the anonymity of a mix.1 The 
urrent implementation of Mixmaster uses a slightly di�erent algorithm: it
ushes a �xed fra
tion of the total number of messages in the mix, given that thenumber of messages that stay in the pool is larger than a minimum; otherwise, itdoes not send any message.



0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Timed mix

n

P
(n

)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Timed pool mix

n

P
(n

)
(a) Timed Mix (b) Timed pool mix

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Timed dinamic pool mix 

n

P
(n

)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Threshold pool mix

n

P
(n

)

(
) Timed dynami
 pool mix (d) Threshold pool mixFig. 1. Representing mixes as fun
tions from the number of messages inside the mixto the fra
tion of messages to be 
ushed



3 Anonymity set sizeWe know from [SD02,DSCP02℄ that the anonymity set size 
an be 
omputedusing the entropy of the probability distribution that relates in
oming and out-going messages. This metri
 depends on two parameters: the number of messagesmixed and the value of the distribution of probabilities of an outgoing messagemat
hing an input. In the absen
e of a priori or 
ontextual information aboutthe inputs, this distribution is given by the probability of a message leaving inea
h round. Therefore, the more messages we mix, the more anonymity; andthe more evenly distributed the probability of a message leaving in round r, themore anonymity (i.e., we gain anonymity when it is more diÆ
ult to predi
t thenumber of rounds that a message stays in the pool).Let us fo
us on timed pool mixes. The fun
tion represented in the Figure1(b) gives us the probability of a message leaving in the 
urrent round as afun
tion of the number of messages 
ontained in the mix. Let nr be the number ofmessages 
ontained in the mix at round r, and P (nr) (the represented fun
tion)the probability of a message leaving the mix at round r.The probability of a message that arrived at round i leaving at round r isgiven by: prob(i) = P (nr) r�1Yj=i(1� P (nj)) :That is, the fa
t that the message did not leave the mix in the rounds i::(r�1)and it leaves in round r. Note that when P (nj) grows, the prob(i) values areless evenly distributed, and the entropy (and, 
onsequently, the anonymity setsize) de
reases2. This is not a problem if the number of messages mixed at ea
hround is large, but when n is 
lose to the pool size, the anonymity may be toosmall. We propose a solution to this problem in Se
tion 5.4 Generalising MixesThe natural way to pro
eed is to say that a mix is an arbitrary fun
tion from thenumber of messages inside the mix to the per
entage of messages to be 
ushed.What does this gain us?Throughout the mix literature, a tradeo� between message delay and anonymity
an 
learly be seen. Indeed, as Serjantov and Danezis showed in [SD02℄, the poolmix gains more anonymity from higher average delay as 
ompared to the thresh-old mix. Expressing the mix bat
hing strategy as a fun
tion allows us to de�nean arbitrary tradeo� between anonymity and message delay. We now go on toexamine a parti
ular mix fun
tion.2 Note that this is entirely 
onsistent with our intuition: the higher the fra
tion ofmessages we 
ush ea
h round, the smaller the anonymity. Or equivalently, the moremessages we delay during ea
h round, the higher the anonymity.



5 Proposed designSuppose that we woudl like to develop a mix whi
h has the properties in lowand high traÆ
 
onditions3 as a parti
ular timed dynami
 pool mix, but whi
hgains more anonymity for a longer delay in low traÆ
 
onditions. This is easilypossible { all one needs to do is to invent a suitable fun
tion.Note that the numbers are given on order to illustrate qualitative examples.The values of the fun
tions should be optimised for the requirements of a par-ti
ular system, depending on the traÆ
 load, number of users, tolerated delay,minimum required anonymity, et
.In Figure 2 we show a 
omparison between the timed dynami
 pool mixand our new mix, whi
h is de�ned by a suitable fun
tion (normal 
umulativedistribution fun
tion).
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Fig. 2. Timed dynami
 pool mix vs a mix based on the normal 
umulative distributionfun
tionThe normal 
umulative distribution fun
tion has desirable properties. Itgrows smoothly at low n, providing a larger anonymity when the mix 
ontainsfew messages. This is a
hieved at the 
ost of in
reasing the delay in low traÆ
3 Or, more pragmati
ally, the same size of the pool and the same fra
tion of messagesto be sent out when there is lots of traÆ





onditions. On the other hand, when the number of mixed messages is largeenough, the 
umulative fun
tion improves the delay over the Cottrell fun
tion.6 Randomising Mixes: The Binomial MixIn this se
tion we add randomness to a mix. This has the e�e
t of hiding thenumber of messages whi
h are in the mix at the time it 
ushes.Suppose we treat the result of the fun
tion P (n) not as a fra
tion, but asa probability. We 
an then use it as the bias of a 
oin, whi
h we toss for ea
hmessage inside the mix. A head indi
ates that this message should be sent outduring this round, a tail { that it should remain in the mix.Let s be the variable that represents the number of messages sent by the mixwhen it 
ushes. On average, s = nP (n); but s follows a binomial distribution,whi
h has a varian
e equal to np(1 � p), where p is the result of the fun
tionP (n). The property of the mix is that by observing s the atta
ker does notobtain mu
h information about the value of n. The e�ort required to estimaten is analysed in Se
tion 6.1.Due to this property, we 
all this proposed mix binomial mix.6.1 Guessing the number of messages 
ontained in the mixWe analyse the information obtained by a passive atta
ker that observes theinput and output of the binomial mix. Then we explain how the atta
ker 
an
ombine the information obtained in multiple observations and give an estimateof the number of rounds needed to a

urately guess n.Observation of one output. When the atta
ker is allowed to observe onlyone output, the only available information he has is s. We have 
onstru
ted asimulator that 
al
ulates the probabilities of every value of n after observingthat the mix outputs s messages.Given n, we 
an 
al
ulate the probability of sending s messages with thefollowing formula, a

ording to the binomial distribution [Fel50℄:p(sjn) = n!s!(n� s)!ps(1� p)n�s ; (1)where p is the result of the fun
tion P (n).But the atta
ker does not know n, he has to estimate n from the observa-tion of s. Bayes' rule 
an be applied to reverse the formula and 
ompute theprobability of ea
h n4. p(njs) = p(sjn)PNmaxi=s p(ijn) : (2)4 Given that the atta
ker does not have any a priori information he must assume,initially, that any possible value of n between s and Nmax (maximum 
apa
ity ofthe mix) is equally probable.



The atta
k is implemented as follows: the atta
ker observes s and assumesthat the n that generated this output is at least s and at most Nmax. In orderto 
ompute the probability of n taking a parti
ular value, say 100, we applyequation 1 using this value for n, and then substitute the result in equation 2.We also need to 
al
ulate the result of equation 1 for this n and every possiblevalue of s.Using this formula the atta
ker 
an obtain the probability of ea
h value ofn given than the mix has sent s messages. The pra
ti
al results show that theatta
ker 
annot guess the value of n with probability greater than 15%. We havealso 
al
ulated the 95% 
on�den
e interval and found that, typi
ally, it 
ontainsbetween 12 and 30 di�erent values of n. This is due to the large value of thevarian
e of a binomial distribution.Number of rounds needed to estimate n with 95% 
on�den
e. We haveimplemented a passive atta
k in the simulator in order to have an estimate onthe number of rounds required by the atta
ker to guess with probability 95%the 
orre
t value of n.Given that every round is independent from the others, we 
an multiply theresults of every round, taking 
are of shifting the terms we are multiplying asmany positions as the di�eren
e between the n of the �rst round of atta
k, n0,and the 
urrent nr. This di�eren
e is known to the atta
ker be
ause he 
an 
ountthe in
oming and outgoing messages. The details of this algorithm 
an be foundin Appendix A.The atta
ker, a

ording to the results of the simulations, needs typi
ally 
loseto 200 rounds of observation. This number 
ould be improved by 
hoosing a moreappropriate P(n)-fun
tion. In terms of time, he will have to wait the number ofrounds times T (timeout of the mix).6.2 The blending atta
k on the binomial mixAs we have seen in the previous se
tion, a passive atta
ker needs a substantialnumber of rounds of observation in order to a

urately guess the 
urrent n.Therefore, it does not seem to be pra
ti
al to deploy a blending atta
k using thesame strategy as with 
lassi
al pool mixes.In this se
tion we des
ribe �rst the atta
k model, then the steps needed inorder to deploy a blending atta
k and, �nally, we analyse the results.Atta
k model. The atta
ker we are 
onsidering 
ontrols all 
ommuni
ationlines (global atta
ker). He 
an not only observe all in
oming and outgoing mes-sages, but also delay the messages of the users and insert messages (a
tive at-ta
ker). The atta
ker does not have a

ess to the 
ontents of the mix, i.e., themix is a bla
k box for the atta
ker (external atta
ker). In order to test thee�e
tiveness of the design, we 
onsider a setup with only one mix. whi
h



The 
ooding strategy. The goal of the atta
ker is to tra
e a parti
ular message(the target message) that is sent by a user to the mix. The a
tions of the atta
ker
an be divided into two phases: the emptying phase and the 
ushing phase.The emptying phase. During this stage of the atta
k, the goal of the atta
keris to remove all unknown messages 
ontained in the pool, while preventing newunknown messages from going into the mix. In order to for
e the mix to sendout as many unknown messages as possible in ea
h round, the atta
ker sendsto the mix NT messages, where NT is the minimum number of messages thatguarantees that the P (n) fun
tion takes its maximum value, pmax. If the atta
kerwants to empty the mix with probability 1 � �, then he will have to 
ood themix for r rounds.The formula that 
an be used to estimate the number of rounds needed to
ush all unknown messages with probability 1� � is:(1� (1� pmax)r)n � 1� � : (3)Where n is the number of messages 
ontained in the pool. If the atta
kerdoes not have any information about n he will have to assume n = Nmax (worst
ase s
enario for the atta
ker).Cost of emptying the mix. We 
ompute the 
ost, CE , of this phase of the atta
ktaking into a

ount the following:{ Number of messages the atta
ker has to send to the mix.{ Time needed to 
omplete the operation.{ Number of messages the atta
ker has to delay.Number of messages the atta
ker has to send to the mix. In the �rst round theatta
ker has to send NT messages, to ensure that the fun
tion P (n) takes itsmaximum value, pmax, and therefore the probability of ea
h message leaving ismaximum. In the following rounds, it is enough to send as many messages asthe mix outputs. Note that if n+NT is bigger than Nmax, then some messageswill be dropped and the mix will 
ontain Nmax messages.Thus, for the �rst round the atta
ker sends NT messages, and the follow-ing rounds he sends (NT + n)pmax messages on average. The total number ofmessages sent during this pro
ess is:Number of messages sent = NT + (r � 1)(NT + n)pmax : (4)Time needed to 
omplete the operation. This is a timed mix, so the atta
ker hasto wait T units of time for ea
h round. Therefore, the total time needed is rTtime units.Number of messages the atta
ker has to delay. Assuming that the users generatemessages following a Poisson distribution with parameter �, the atta
ker has todelay, in average, �rT messages.



The 
ushing phase. On
e the mix has been emptied of unknown messages, theatta
ker sends the target message to the mix. Now, he has to keep on delayingother in
oming unknown messages and also send messages to make the mix 
ushthe target.The number of rounds needed to 
ush the message is, on average, r = 1pmaxThe 
ost of this phase is 
omputed a

ording to the previous parameters.Number of messages the atta
ker has to send to the mix. Assuming that theatta
ker 
arries out this phase of the atta
k immediately after the emptyingphase, the number of messages needed in the �rst round is (NT + n � 1)pmax,and in the following ones (NT + n)pmax. The total number of messages is:pmax(NT + n� 1 + (r � 1)(NT + n)) (5)The other two parameters are 
omputed in the same way as in the emptyingphase, taking into a

ount the new value of r.Guessing the number of messages within the mix with an a
tive atta
kThe atta
ker 
an use the 
ooding strategy (emptying phase only) in order todetermine the number of messages 
ontained in the pool of the mix. This atta
kis mu
h faster than the one des
ribed in Se
tion 6.1, although it requires moree�ort from the atta
ker.Probabilisti
 su

ess. Note that, due to the probabilisti
 nature of the bi-nomial mix, the atta
ker only su

eeds with probability 1 � �. Therefore, withprobability � there is at least one unknown message in the mix. In this parti
-ular 
ase, the atta
ker 
an dete
t his failure if during the 
ushing phase morethan one unknown message leaves the mix in the same round (and there is nodummy traÆ
 poli
y), whi
h happens with probability p2max for the 
ase of oneunknown message staying during the emptying phase (the most probable 
ase).With probability pmax(1 � pmax) the target message leaves the mix alone, andthe atta
k is su

essful. Also with probability pmax(1�pmax), the other unknownmessage leaves the mix �rst, and the atta
ker follows a message that is not thetarget without noti
ing. Finally, with probability (1 � pmax)2, both messagesstay in the pool and the situation is repeated in the next round.6.3 Average delay of a message.Assuming that the population of users generate messages following a Poissondistribution with mean � messages per time unit, and given that the mix 
ushesmessages every T time units, the average number of messages going into themix per round is �T . Assuming that the mix outputs as many messages as itgets (that is, the P (n) fun
tion and Nmax are designed in su
h a way that theprobability of dropping messages be
ause of a la
k of spa
e in the mix is verysmall), the average number of messages sent per round is s = �T . We know that



s = nP (n), therefore, we have to �nd n su
h that nP (n) = �T . This number
an be found re
ursively.Given that the average number of rounds that a message spends in the mixis 1P (n) , where n has to be 
omputed as stated above, the average delay of amessage going through the binomial mix is TP (n) time units.6.4 Additional measure: Timestamps.Additional measures, like timestamps, 
an be used in order to prevent the blend-ing atta
k. This idea has already been proposed by Kesdogan et al. in [KEB98℄for the Stop-and-Go (SG) mixes.SG mixes work in a di�erent way than pool mixes: users, after 
hoosingthe path of mixes, generate a timestamp for ea
h mix in the path that followsan exponential distribution. The message is en
rypted several times, ea
h timewith the key of one of the mixes. On
e an SG mix has re
eived and de
rypted amessage, it keeps it in the memory a period of time equal to the delay indi
atedby the user. Then, it forwards the message to the next mix.Link Timestamps. In our design, the user 
annot generate timestamps forevery mix in the path, be
ause he does not know how long the message is goingto be delayed in ea
h mix. Therefore, we propose the use of link timestamps: theuser generates a timestamp for the �rst mix and, in ea
h of the following hops,the mix puts the timestamp on the message on
e the message has been takenfrom the pool and is going to be sent.When a mix re
eives a timestamp that is too old, it drops the message. Withthis poli
y, the atta
ker has limited time to delay messages: if he delays thetarget message too long it will be dropped, and the atta
ker will not have anymeans to dis
lose the re
ipient of the message.Using this measure prevents the atta
ker from delaying the target messageat his will, and the atta
ker does not have means to deploy a blending atta
k(unless he knows that the message is going to be sent by the user in advan
e, and
an empty the mix before). Therefore, in this s
enario the binomial mix providesprote
tion against the blending atta
k. Furthermore, the anonymity provided bythe binomial mix will not be threatened by a 
hange in the traÆ
 load while this
hange, if large enough, 
an a�e
t the anonymity provided by a SG mix (sin
eSG mixes only delay messages).Drawba
ks. The use of timestamps presents pra
ti
al problems, and this isthe reason why we have not in
luded them in the basi
 design. The most seriousproblem is the syn
hronisation of 
lo
ks. If the di�erent 
omputers (both usersand mixes) have a deviation in their 
lo
ks, many valid messages are dropped.All entities 
ould be syn
hronised using a time server, but then the se
urity ofthis time server be
omes an issue.



Also, timestamps are not so e�e
tive if we are dealing with 
orrupted mixes:a 
orrupted mix 
an put a fake timestamp on a message and give the atta
kerextra time to empty the following mix in the path.7 Con
lusionsWe have proposed a framework with whi
h we 
an generalize 
lassi
al pool mixes.This model seems to be a powerful tool that gives us a new understandingof the bat
hing strategies implemented by existing mixes. Also, new strategiesthat improve existing designs arise from the framework. We have proposed a
umulative distribution fun
tion in order to have a tailored anonymity/delaytradeo� that adapts to the 
u
tuations in the traÆ
 load.We have suggested a simple and intuitive way to deal with the anonymity setsize provided by a mix, in whi
h the distribution of probabilities of the numberof rounds that a message stays in the pool is a fun
tion of P (n).We have added randomness to the 
ushing algorithm, in order to hide thenumber of messages 
ontained in the mix. We have analyzed the e�ort requiredby the atta
ker in order to deploy passive and a
tive atta
ks. The su

ess ofthese atta
ks be
omes probabilisti
 in 
ontrast with 
lassi
al pool mix designs.We suggest a timestamp strategy as 
ountermeasure to limit the power ofan a
tive atta
ker. If su
h an strategy 
an be se
urely implemented, the n � 1atta
k be
omes no longer possible.8 Future workSome of the topi
s we 
an identify as deserving further resear
h are:{ The analysis of the possibilities of the framework. We have proposed the
umulative distribution fun
tion as an alternative to existing mix algorithms.Other fun
tions with interesting properties may arise from the study of theframework.{ Thorough analysis of the properties of the proposed binomial mix. We havepointed out qualitative properties of this mix. A more in-depth analysis andtests are needed in order to have a full understanding of the design andits possibilities. A method for analysing timed mixes is proposed in [SN03℄,whi
h needs to be generalised to a

ount for the binomial mix. We wouldalso like to study the impli
ations of the fa
t that mixes hide the number ofmessages that are inside the pool.{ Study the properties of the proposed mix when dummy traÆ
 poli
ies areimplemented.A
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ombine the results of di�erentobservations of the output.The results of two observations are independent, given that the result of theBernoulli trials do not depend on previous rounds.Notation:{ nj is the number of messages 
ontained in the mix at the j-th round ofatta
k (being n0 -the number of messages 
ontained in the mix when theatta
k starts- the number the atta
ker is trying to guess).{ sj is the number of messages sent by the mis in the j-th round of atta
k.This number is a fun
tion of ni.{ fj is the number of messages that arrive to the mix during the j-th round.We take into a

ount fj starting from j = 1.{ shift is the di�eren
e between nj and n0 (shift = nj � n0). The atta
kerknows this number be
ause he observes the number of in
oming and outgoingmessages at ea
h round; e.g., at round 1 shift = n1 � n0 = f1 � s0. Thisnumber 
an be either positive or negative.{ P is an array that 
ontains the result of the algorithm in the present round,taking into a

ount all the previous rounds. The array hasNmax+1 elements.P [i℄ 
ontains the probability of n0 = i.{ A is an array that 
ontains the probabilities of the values of n for this round.The array has Nmax + 1 elements. A[i℄ 
ontains the probability of nj = i,where j is the number of the round.The algorithm at the j-th round is as follows:shift > 0 In this 
ase we know that nj > n0. In order to be able to multiply theresult of this round to the previous ones (whi
h have the maximum value 
loseto n0), we have to shift the values of A shift positions to the left. This way, theestimation of nj 
an be used to improve our knowledge of n0 (n0 = nj � shift).The values we lose at the left of the array are not important, be
ause this
orresponds to impossible values of nj : given that n0 � 0, this implies thatnj � shift. On the other hand, at the right side of the array, we have to introdu
enumbers. The solution is to propagate the value of Nmax. This makes sensebe
ause in 
ase n0 � Nmax�shift then nj = Nmax, given that on
e the 
apa
ityof the mix (Nmax) has been ex
eeded messages are dropped.After shifting the values of the A array, we have to res
ale them in order tohave a distribution of probabilities (the sum of all values must be 1).The 
ode in Java is as follows:



if (shift > 0) {for (int i=0; i<=N_MAX-shift; i++)A[i℄ = A[i+shift℄;for (int i=N_MAX+1-shift; i<=N_MAX; i++)A[i℄ = A[N_MAX℄;// res
aling Adouble sum = 0.0;for (int i=0; i<=N_MAX; i++) sum = sum + A[i℄;for (int i=0; i<=N_MAX; i++) A[i℄ = A[i℄/sum;}shift < 0 This is the 
ase in whi
h in the present round nj < n0. We haveto shift the values of the A array to the right by shift positions. We lose thelast shift values, whi
h are, again, impossible values of nj , be
ause n0 � Nmaximplies nj � Nmax�jshiftj. At the left of the array we have to introdu
e valuesfrom the positions 0 to jshiftj � 1. In this 
ase the value we introdu
e is 0: weknow that nj � 0, therefore n0 � jshiftj (note that n0 = nj + jshiftj). Thisimplies that any value of n0 smaller than jshiftj is impossible.Again, as in the previous 
ase, we must res
ale the values of A in order toobtain the new distribution.The 
ode in Java is as follows:if (shift < 0) {for (int i=N_MAX; i>=-shift; i--)A[i℄ = A[i+shift℄;for (int i=0; i<-shift; i++)A[i℄ = 0.0;// res
aling Adouble sum = 0.0;for (int i=0; i<=N_MAX; i++) sum = sum + A[i℄;for (int i=0; i<=N_MAX; i++) A[i℄ = A[i℄/sum;}shift = 0 In this 
ase n0 = nj , and we 
an multiply both arrays (P and A)without 
hanging A.Multiply P and A. After shifting and res
aling the elements of the array A, we
an multiply both arrays element by element. After this multipli
ation we haveto res
ale the result and we obtain the distribution of probabilities of the valueof n0 in
luding the j-th round.The 
ode in Java is:// multiply probabilitiesdouble sum = 0.0;



for (int i=0; i<=N_MAX; i++) {P[i℄ = P[i℄*A[i℄;sum = sum + P[i℄;}// res
alingfor (int i=0; i<=N_MAX; i++) P[i℄ = P[i℄/sum;At this point, the array P 
ontains the 
urrent distribution of probabilities,being P [i℄ the probability of n0 = i, and taking into a

ount the informationobtained during all the rounds of atta
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