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t. In this paper we look 
losely at the popular metri
 of anony-mity, the anonymity set, and point out a number of problems asso
iatedwith it. We then propose an alternative information theoreti
 measureof anonymity whi
h takes into a

ount the probabilities of users sendingand re
eiving the messages and show how to 
al
ulate it for a messagein a standard mix-based anonymity system. We also use our metri
 to
ompare a pool mix to a traditional threshold mix, whi
h was impossibleusing anonymity sets. We also show how the maximum route length re-stri
tion whi
h exists in some �elded anonymity systems 
an lead to theatta
ker performing more powerful traÆ
 analysis. Finally, we dis
ussopen problems and future work on anonymity measurements.1 Introdu
tionRemaining anonymous has been an unsolved problem ever sin
e Captain Nemo.Yet in some situations we would like to provide guarantees of a person remaininganonymous. However, the meaning of this, both on the internet and in reallife, is somewhat elusive. One 
an never remain truly anonymous, but relativeanonymity 
an be a
hieved. For example, walking through a 
rowd of people doesnot allow a bystander to tra
k your movements (though be sure that your 
lothesdo not stand out too mu
h). We would like to express anonymity properties inthe virtual world in a similar fashion, yet this is more diÆ
ult. The users wouldlike to know whether they 
an be identi�ed (or rather the probability of beingidenti�ed). Similarly, they would like to have a metri
 to 
ompare di�erent waysof a
hieving anonymity: what makes you more diÆ
ult to tra
k in London |walking through a 
rowd or riding randomly on the underground for a few hours?In this paper, we 
hoose to abstra
t away from the appli
ation level issuesof anonymous 
ommuni
ation su
h as preventing the atta
ker from embeddingURLs pointing to the atta
ker's webpage in messages in the hope that the vi
-tim's browser opens them automati
ally. Instead, we fo
us on examining ways ofanalysing the anonymity of a messages going through mix-based anonymity sys-tems [Cha81℄ in whi
h all network 
ommuni
ation is observable by the atta
ker.In su
h a system, the sender, instead of passing the message dire
tly to there
ipient, forwards it via a number of mixes. Ea
h mix waits for n messages to



arrive before de
rypting and forwarding them in a random order, thus hidingthe 
orresponden
e between in
oming and outgoing messages.Perhaps the most intuitive way of measuring the anonymity of a messageMin a mix system is to just 
ount the number of messages M has been mixedwith while passing through the system. However, as pointed out in [Cot94℄ and[GT96℄, this is not enough as all the other messages 
ould, for instan
e, 
omefrom a single known sender. Indeed, the atta
ker may mount the so 
alled n� 1atta
k based on this observation by sending n� 1 of their own messages to ea
hof the mixes onM 's path. In this 
ase, the re
eiver ofM 
eases to be anonymous.Another popular measure of anonymity is the notion of anonymity set. In therest of this se
tion we look at how anonymity sets have previously been de�nedin the literature and what systems they have been used in.1.1 Dining Cryptographers' NetworksThe notion of anonymity set was introdu
ed by Chaum in [Cha88℄ in order tomodel the se
urity of Dining Cryptographers' (DC) networks. The size of theanonymity set re
e
ts the fa
t that even though a parti
ipant in a Dining Cryp-tographers' network may not be dire
tly identi�able, the set of other parti
ipantsthat he or she may be 
onfused with, 
an be large or small, depending on theatta
ker's knowledge of parti
ular keys. The anonymity set is de�ned as the setof parti
ipants who 
ould have sent a parti
ular message, as seen by a globalobserver who has also 
ompromised a set of nodes. Chaum argues that its sizeis a good indi
ator of how good the anonymity provided by the network reallyis. In the worst 
ase, the size of the anonymity set is 1, whi
h means that noanonymity is provided to the parti
ipant. In the best 
ase, it is the size of thenetwork, whi
h means that any parti
ipant 
ould have sent the message.1.2 Stop and Go MixesIn [KEB98℄ Kesdogan et al. also use sets as the measure of anonymity. Fur-thermore, they de�ne the anonymity set of users as those who had a non-zeroprobability of having the role R (sender or re
ipient) for a parti
ular message.The size of the set is then used as the metri
 of anonymity. Furthermore, de-terministi
 anonymity is de�ned as the property of an algorithm whi
h alwaysyields anonymity sets of size greater than 1.The authors also state that it is ne
essary to prote
t users of anonymitysystems against the n � 1 atta
k des
ribed earlier and propose two di�erentways doing so: the Stop-and-Go-mixes and a s
heme for mix 
as
ades1. Stop-and-Go are a variety of mixes that, instead of waiting for a parti
ular numberof messages to arrive, 
ush them a

ording to some delay whi
h is in
luded inthe message. They prote
t against the n� 1 atta
k by dis
arding the messagesif they are re
eived outside the spe
i�ed time frame. Thus, the atta
ker 
annotdelay messages whi
h is required to mount the n� 1 atta
k.1 An anonymity system based on mix 
as
ades is one where all the senders send alltheir messages through one parti
ular sequen
e of mixes.



1.3 Standard terminologyIn an e�ort to standardise the terminology used in anonymity and pseudonymityresear
h publi
ations and 
larify di�erent 
on
epts, P�tzmann and K�ohntopp[PK00℄ de�ne anonymity itself as:\Anonymity is the state of being not identi�able within a set of subje
ts,the anonymity set."In order to further re�ne the 
on
ept of anonymity and anonymity set andin an attempt to �nd a metri
 for the quality of the anonymity provided they
ontinue:\Anonymity is the stronger, the larger the respe
tive anonymity set isand the more evenly distributed the sending or re
eiving, respe
tively,of the subje
ts within that set is."The 
on
ept of \even distribution" of the sending or re
eiving of membersof the set identi�es a new requirement for judging the quality of the anonymityprovided by a parti
ular system. It is not obvious anymore that the size is avery good indi
ator, sin
e di�erent members may be more or less likely to bethe sender or re
eiver be
ause of their respe
tive 
ommuni
ation patterns.2 DiÆ
ulties with Anonymity Set SizeThe atta
ks against DC networks presented in [Cha88℄ 
an only result in par-titions of the network in whi
h all the parti
ipants are still equally likely tohave sent or re
eived a parti
ular message. Therefore the size of the anonymityset is a good metri
 of the quality of the anonymity o�ered to the remainingparti
ipants. In the Stop-and-Go system [KEB98℄ de�nition, the authors realisethat di�erent senders may not have been equally likely to have sent a parti
ularmessage, but 
hoose to ignore it. We note, however, that in the 
ase they aredealing with (mix 
as
ades in a system where ea
h mix veri�es the identities ofall the senders), all senders have equal probability of having sent (re
eived) themessage. In the standardisation attempt [PK00℄, we see that there is an attemptto state, and take into a

ount this fa
t in the notion of anonymity, yet a formalde�nition is still la
king.We have 
ome to the 
on
lusion that the potentially di�erent probabilitiesof di�erent members of the anonymity set a
tually having sent or re
eived themessage are unwisely ignored in the literature. Yet they 
an give a lot of extrainformation to the atta
ker.2.1 The Pool MixTo further emphasise the dangers of using sets and their 
ardinalities to assessand 
ompare anonymity systems, we note that some systems have very strong



\anonymity set" properties. We take the s
enario in whi
h the anonymity setof a message passing through a mix in
ludes (at least) the senders of all themessages whi
h have ever passed through that mix.This turns out to be the 
ase for the \pool mix" introdu
ed by Cottrellin [Cot94℄. This mix always stores a pool of n messages (see Figure 1). Whenin
oming N messages have a

umulated in its bu�er, it pi
ks n randomly out ofthe n+N it has, and stores them, forwarding the other ones in the usual fashion.Thus, there is always a small probability of any message whi
h has ever beenthrough the mix not having left it. Therefore, the sender of every message shouldbe in
luded in the anonymity set (we defer the formal derivation of this fa
tuntil Se
tion 5). At this point we must 
onsider the anonymity provided by thissystem. Does it really give us very strong anonymity guarantees or is measuringanonymity using sets inappropriate in this 
ase? Our intuition suggests the latter,2 espe
ially as the anonymity set seems to be independent of the size of the pool,n.PSfrag repla
ements ...N N...
n

Fig. 1. A Pool Mix2.2 Knowledge VulnerabilityYet another reason for being s
epti
al of the use of anonymity sets is the vulner-ability of this metri
 against an atta
ker's additional knowledge. Consider thearrangement of mixes in Figure 2. The small squares in the diagram representsenders, labelled with their name. The bigger boxes are mixes, with threshold of2. Some of the re
eivers are labelled with their sender anonymity sets.Noti
e that if the atta
ker somehow establishes the fa
t that, for instan
e,A is 
ommuni
ating with R, he 
an derive the fa
t that S re
eived a messagefrom E. Indeed, to expose the link E ! S, all the atta
ker needs to know is that2 A side remark is in order here. In a pra
ti
al implementation of su
h a mix, onewould, of 
ourse, put an upper limit on the time a message 
an remain on the mixwith a poli
y su
h as: \All messages should be forwarded on within 24 hours + Kmix 
ushes of arrival".
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Fig. 2. Vulnerability of Anonymity Setsone of A;B;C;D is 
ommuni
ating to R. And yet this is in no way re
e
tedin S's sender anonymity set (although E's re
eiver anonymity set, as expe
ted,
ontains just R and S).It is also 
lear that not all senders in this arrangement are equally vulnerableto this, as is the fa
t that other arrangements of mixes may be less so. Althoughwe have highlighted the atta
k here by using mixes with threshold of 2, it is 
learthat the prin
iple 
an be used in general to 
ut down the size of the anonymityset.3 EntropyWe have now dis
ussed several separate and, in our view, important issues withusing anonymity sets and their 
ardinalities for measuring anonymity. We havealso demonstrated that there is a 
lear need to reason about information 
on-tained in probability distributions. One 
ould therefore borrow mathemati
altools from Information Theory [Sha48℄. The 
on
ept of entropy was �rst intro-du
ed to quantify the un
ertainty one has before an experiment. We now pro
eedto de�ne our anonymous 
ommuni
ation model and the metri
s that use entropyto des
ribe its quality. The model is very 
lose to the one des
ribed in [KEB98℄.De�nition 1. Given a model of the atta
ker and a �nite set of all users 	 , letr 2 R be a role for the user (R = fsender, re
ipientg) with respe
t to a messageM. Let U be the atta
ker's a-posteriori probability distribution of users u 2 	having the role r with respe
t to M.In the model above we do not have an anonymity set but an r anonymityprobability distribution U . For the mathemati
ally in
lined, U : 	 �R ! [0; 1℄s.t.Pu2	 U(u; r) = 1. In other words, given a messageM , we have a probabilitydistribution of its possible senders and re
eivers, as viewed by the atta
ker.U may assign zero probability to some users whi
h means that they 
annotpossibly have had the role r for the parti
ular message M. For instan
e, if themessage we are 
onsidering was seen by the atta
ker as having arrived at Q,



then U(re
eiver;Q) = 1 and 8S 6= Q U(re
eiver; S) = 0.3. If all the users thatare not assigned a zero probability have an equal probability assigned to them,as in the 
ase of a DC network under atta
k, then the size of the set 
ould beused to des
ribe the anonymity. The interesting 
ase is when users are assigneddi�erent, non zero probabilities.De�nition 2. We de�ne the e�e
tive size S of an r anonymity probability dis-tribution U to be equal to the entropy of the distribution. In other wordsS = �Xu2	 pu log2(pu)where pu = U(u; r).One 
ould interpret this e�e
tive size as the number of bits of additionalinformation that the atta
ker needs in order to de�nitely identify the user uwith role r for the parti
ular messageM. It is trivial to show that if one user isassigned a probability of 1 then the e�e
tive size of is 0 bits, whi
h means thatthe atta
ker already has enough information to identify the user.There are some further observations:{ It is always the 
ase that 0 � S � log2 j	 j.{ If S = 0 the 
ommuni
ation 
hannel is not providing any anonymity.{ If for all possible atta
ker models, S = log2 j	 j the 
ommuni
ation 
hannelprovides perfe
t R anonymity.We now go on to show how to derive the dis
rete probability distributionrequired to 
al
ulate the information theoreti
 metri
 of anonymity presentedabove.3.1 Cal
ulating the Anonymity Probability DistributionWe now show how to 
al
ulate the sender anonymity probability distribution fora parti
ular message passing through a mix system with the standard thresholdmixes. We assume that we have the ability to distinguish between the di�erentsenders using the system. This assumption is dis
ussed in Se
tion 6. To analysea run of the system (we leave this notion informal), we have to have knowledgeof all of the messages whi
h have been sent during the run. (This in
ludes mix-user, user-mix and mix-mix messages and is 
onsistent with the model of theatta
ker who sees all the network 
ommuni
ations, but has not 
ompromisedany mixes.) The analysis atta
hes a sender anonymity probability distributionto every message. The starting state is illustrated in Figure 3a.3 Alternatively, we may 
hoose to view the sender/re
eiver anonymity probabilitydistribution for a message M as an extension of the underlying sender/re
eiveranonymity set to a set of pairs of users with their asso
iated (non-zero) probabilitiesof sending or re
eiving it.



We take the 
ase of the atta
ker performing \pure" traÆ
 analysis. In otherwords, he does not have any a-priori knowledge about the senders and re
eiversand the possible 
ommuni
ations between them. 4 The atta
ker's assumptionarising from this is that a message, having arrived at a mix, was equally likelyto have been forwarded to all of the possible \next hops", independent of whatthat next hop 
ould be.
a)
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Fig. 3. a) The start of the analysis. b) Deriving the anonymity probability distributionof messages going through a mix.For a general mix with n in
oming messages with anonymity probabilitydistributions L0 : : : Ln�1, whi
h we view as sets of pairs, we observe that theanonymity probability distributions of all of the messages 
oming out of themix, are going to be the same. This distribution A is de�ned as follows:(x; p) 2 A i� 9i:(x; p0) 2 Li andp = Pi:(x;pj)2Li pjnThus, the anonymity probability distribution on ea
h of the outgoing arrowson Figure 3a is f(A; 13 ); (B; 13 ); (C; 13 )g.In the next se
tion we will dis
uss how we 
an 
al
ulate the e�e
tive anony-mity size of systems 
omposed of other mixes.3.2 Composing mix systemsGiven some arrangement of individual mixes 
onne
ted together, it is possible to
al
ulate the maximum e�e
tive anonymity size of the system from the e�e
tiveanonymity size of its 
omponents. The assumption ne
essary to do this is thatthe inputs to the di�erent entry points of this system originate from distin
t4 This is a simpli�
ation. In pra
ti
e, the atta
ker analysing email 
an 
hoose to assignlower probabilities to, for example, potential Greek senders of an email in Russianwhi
h arrived in Novosibirsk.



users. In pra
ti
e this assumption is very diÆ
ult to satisfy, but at least we 
anget an upper bound on how well a \perfe
t" system would perform.Assume that there are l mixes ea
h with e�e
tive sender anonymity sizeSi; 0 < i � l. Ea
h of these mixes sends some messages to a mix we shall 
allse
. The probability a message going into se
 originated from mix i is pi; 0 <i � l;Pi pi = 1.Using our de�nitions it is 
lear that Sse
 =P0<i�l pi log(pi) is the e�e
tiveanonymity size of this se
ond mix.The e�e
tive sender anonymity size of messages going through the systemdes
ribed above is P0<i�lP0<j�f(i) pjpi log(pjpi) whi
h simpli�es toStotal = Sse
 + X0<i�l piSiwhere f(i) is the number of inputs that mix i takes and pj ; 0 < j � f(i) is theprobability 
orresponding to the jth input of i.Using this rule we 
an 
al
ulate the e�e
tive sender anonymity set size of mixsystems or other anonymous 
ommuni
ation 
hannels using the e�e
tive sizes oftheir 
omponents and information about how they are inter
onne
ted. A similarapproa
h 
an be used to 
al
ulate the e�e
tive re
ipient anonymity set size.In the next se
tion, we look at how knowledge about the system available tothe atta
ker 
an be used to perform a better anonymity analysis.4 Route lengthHaving in
luded probabilities in the model and demonstrated that they 
an givethe atta
ker more information about the system than just anonymity sets, wenote that the standard atta
ks aimed at redu
ing the size of the anonymity setwill now have the e�e
t of narrowing the anonymity probability distribution.If we 
onsider this distribution as a set of pairs (of a sender and its respe
tivenon-zero probability of having sent the message), then narrowing the probabilitydistribution is the pro
ess of deriving that some senders have zero probability ofsending the message and 
an therefore be safely ex
luded from the set.We now look at an atta
k whi
h not only has the ability to narrow the prob-ability distribution, but also to alter it in su
h a way as to redu
e the entropyof the anonymity probability distributions without a�e
ting the underlying ano-nymity set.As suggested in [BPS00℄, route length is important and some arrangementsof mixes are more vulnerable to route length based atta
ks than others. Here,we demonstrate that maximum route length should be taken into a

ount when
al
ulating anonymity sets. Note that, of 
ourse, the maximum route length ina traditional mix-based anonymity system exists and is known to the atta
ker5.Several mix systems have been designed to remove the maximum route length5 The reason for this is standard, as follows: All the messages in a mix-based systemhave to have the same size, otherwise an atta
ker 
ould tra
e parti
ular messages.




onstraint, for instan
e via tunnelling in Onion Routing [STRL00℄ or Hybridmixes [OA00℄, but it exists in �elded systems su
h as Mixmaster [MC00℄ (max-imum route length of 20) and so 
an be used by the atta
ker.It may also be possible to obtain relevant information by 
ompromising a mix.Some mix systems will allow a mix to infer the number of mixes a message hasalready passed through and therefore the maximum number of messages it maygo through before rea
hing the destination. Su
h information would strengthenour atta
k, so 
are needs to be taken to design mix systems (su
h as Mixmaster[Cot94℄) whi
h do not give it away.
PSfrag repla
ementsAB C

QRSFig. 4. Using maximum route length to redu
e anonymity setsWe illustrate the problem by example. Consider the situation in Figure 4,where ea
h arrow represents a message observed by the atta
ker. Now let ussuppose that the maximum route length is 2, i.e. any message 
an pass throughno more than 2 mixes. The arrow from the bottom to the rightmost mix 
ouldonly have been the message from C as otherwise this message, 
oming from Aor B would have gone through 3 mixes. From this, we infer that C was not
ommuni
ating to S, whi
h makes S's sender anonymity set fA;Bg. Of 
ourse,without taking maximum route length into a

ount, this anonymity set wouldhave been fA;B;Cg.We now illustrate how the same fa
t 
an alter the sender anonymity proba-bility distribution of a parti
ular re
eiver and therefore redu
e its entropy.Here we use the same arrangement of mixes, but look at a di�erent re
eiver,Q. The anonymity probability distribution worked out using the algorithm (with-out the route length 
onstraint) in the previous se
tion is shown in Figure 5. Ifthe atta
ker knows that the maximum route length is 2, the arrow from mix 2 tomix 3 has the sender probability distribution of: f(C; 1)g and thus the probabil-ity distribution at Q (or R) is f(A; 14 ); (B; 14 ); (C; 12 )g. This redu
ed the entropyfrom 1.5613 down to 1.5. Compare this with the entropy of 1.585 for a uniformYet ea
h message (when leaving the sender) has to in
lude inside it all the addressesof all the servers it will be forwarded via. Thus, there is a limit on the number ofthe mixes a message 
an pass through, and it is known to the atta
ker.
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Fig. 5. Using maximum route length to alter anonymity probability distributiondistribution. It is also worth noting that an atta
k whi
h eliminated one of thepossible senders, would redu
e the entropy to at most 1 bit and an atta
k whi
hwould expose a single host as the sender of a parti
ular message to Q | to 0bits. Thus, our metri
 is 
apable of not only 
omparing the e�e
tiveness of sys-tems, but also the power of di�erent atta
ks. A similar idea has been proposedby [DSCP02℄. However, 
omparing \the e�e
tiveness" of di�erent atta
ks usingthis method in general is beyond the s
ope of this paper and is the subje
t offuture work.5 Analysis of the Pool MixRe
all from Se
tion 2.1 that a pool mix stores n messages and re
eives N mes-sages every round. It then puts together the stored and re
eived messages andoutputs N of them (
hosen randomly). The remaining n messages are stored forthe next round. On round zero the mix stores n \dummy messages" that lookto outsiders as if they were real, but were 
reated by the mix itself.First, we 
al
ulate the sender anonymity set and the sender anonymity setsize. Denote the anonymity sets asso
iated with the N messages arriving atround i, Ki;1 : : :Ki;N and let K̂i = Ki;1 [ : : :[Ki;N . Now the sender anonymityset of the outgoing messages after round k will be the union of the anonymitysets of the messages stored in the mix (all of whi
h are the same and are equal tothe anonymity sets of all the messages whi
h left the mix at the previous round)and the messages whi
h arrived from the network.A0 = fmixgAi = Si�1 [ K̂iNow, assume that all of the messages arrive at the pool mix dire
tly fromsenders, whi
h are all di�erent from ea
h other. Formally, 8i; j; k; l:(i 6= j _ k 6=l)) Ki;j 6= Kk;l. This implies that the size of the set after round k isjAkj = N � k + 1



and for k !1 limk!1 jAj ! 1It is 
lear that the size of Ak does not provide us with a useful insight on howwell this mix performs. In parti
ular, it does not 
apture the fa
t that sendersof past rounds have smaller probabilities of being the senders of messages that
ome out of the mix at the last round. Finally, this metri
 does not allow us to
ompare the pool mix with other mixing ar
hite
tures, in
luding 
onventionalthreshold mixes.We therefore 
ompute the e�e
tive size, based on the entropy, of the senderanonymity set.The probability that a message whi
h 
omes out of the mix at round k wasintrodu
ed by a sender in the mix at round 0 < x � k isproundx = NN + n � nN + n�k�xpround0 = � nN + n�kDe�nition 3. Now, assume that ea
h message was 
oming dire
tly from a senderand all senders only send one message. Note that after round 0, the only senderinvolved is the mix itself. The e�e
tive size of the sender anonymity set for roundk isEk = � kXx=1 NN + n � nN + n�k�x log 1N + n � nN + n�k�x!!�� nN + n�k log� nN + n�kAfter a large number of rounds (k !1) the above expression of the e�e
tivesize 
onverges towardslimk!1E = �1 + nN � log (N + n)� nN lognThe e�e
tive size of the set provides us with useful information about howthe mix is performing. As one would expe
t if there is no pool then the e�e
tivesender anonymity set is the same as for a threshold mix ar
hite
ture with Ninputs.Example 1. When there is no pool (n = 0) the e�e
tive anonymity set size islimk!1E = logN



Example 2. When only one message is fed ba
k to the mix (n = 1)limk!1E = �1 + 1N � log (N + 1)So a mix of this type that takes N = 100 inputs will have an e�e
tive sizeof limk!1 E = 6:725. This is equivalent to a threshold mix that takes � 106inputs.Example 3. A pool mix with N = 100 inputs out of whi
h n = 10 are fed ba
kwill have an e�e
tive size of limk!1 E = 7:129. That is equivalent to a thresholdmix with N = 27:127 � 140 inputs.The additional anonymity that the pool mix provides is not \for free" sin
ethe average laten
y of the messages in
reases from 1 round to 1+ nN rounds witha varian
e of n�(N+n)2N3 .6 Dis
ussionLet us now examine the s
enarios in whi
h our analysis may be useful anddemonstrate that one would not be able to use other well-known atta
ks to
ompromise anonymity.The new entropy measure of anonymity is useful in analysing mix networks,rather than 
as
ades or DC nets where there is no possibility of members ofanonymity sets having di�erent probabilities of taking on parti
ular roles. Theroute length te
hniques are appli
able in mix network systems whi
h have amaximum route length 
onstraint su
h as Mixmaster [MC00℄.It is worth mentioning that a similar information theoreti
 metri
 was in-dependently proposed in [DSCP02℄ and used to 
ompare di�erent anonymitysystems. Here we 
on
entrate on using it for analysing mix systems and showhow it 
an be used to express new atta
ks.7 Con
lusionWe have demonstrated serious problems with using the notion of anonymity setfor measuring anonymity of mix-based systems. In parti
ular, we exhibited thepool mix as an illustration of the fa
t that we 
annot always use anonymity setsto 
ompare the e�e
tiveness of di�erent mix 
ushing algorithms.We have also proposed an information-theoreti
 metri
 based on the idea ofanonymity probability distributions. We showed how to 
al
ulate them and usedthe metri
 to 
ompare the pool mix to more traditional mixes.We must note, however, that our new metri
 does not really deal with theknowledge vulnerability problem dis
ussed in Se
tion 2.2. We feel that additionalstru
ture to enri
h the notion of anonymity sets and enable better analysis ofknowledge-based vulnerabilities is needed. However, having introdu
ed proba-bilities into the model, we want to go on and develop a framework 
apable of



answering questions like \What happens to the anonymity probability distribu-tion of re
eiver S when the atta
ker knows that A is 
ommuni
ating to P withprobability 13 or R with probability 23?"6. This is the subje
t of future work.We then showed that 
are must be taken when 
al
ulating anonymity proba-bility distributions as the same atta
ks as used against the anonymity set metri
,would also apply here. In parti
ular, we demonstrated that if maximum routelength in a mix system exists, it is known to the atta
ker and 
an be used ex-tra
t additional information and gain knowledge whi
h was impossible to expressusing anonymity sets.We feel that more sophisti
ated probabilisti
 metri
s of anonymity should bedeveloped. Moreover, perhaps, if 
ombined with knowledge of the 
ommuni
ationproto
ols exe
uted by the sender and re
ipient, they 
an yield powerful atta
ksagainst mix-based systems. Moreover, we feel that in a subje
t like anonymity,formal reasoning is essential if strong guarantees are to be provided. Yet anotherdire
tion is relating the above to unlinkability and plausible deniability. All theseare subje
ts of future work.7.1 A
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