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Abstract

Exploiting autonomic adaptation in defending a dis-
tributed application is a relatively new research area. We
describe how the QuO adaptive middleware was used to im-
plement auto-adaptive defenses ranging from simple rapid-
response sensor-actuator tactics to more sophisticated con-
tainment and outrun strategies. In addition, we report on
two experiments where live red team attacks were used to
evaluate our auto-adaptive defense technology.

1 Introduction

The availability and quality of resources and services an
application relies upon may vary over time in a distributed
setting. Such variations may happen naturally, or they may
be caused by a malicious attacker. In the most benign case,
some design assumptions may be found to be improper at
deployment time, or may become violated for a brief period
during run time. More serious cases involve resource cor-
ruption/depletion attacks that threaten the very survival of
the application. Therefore, survivability is clearly an area
where advances in autonomic adaptation can provide a high
pay-off.

We have been researching the issues underlying adaptive
distributed systems for the last few years and have devel-
oped a general purpose adaptive middleware called QuO
(Quality Objects) based on the distributed object comput-
ing (DOC) paradigm. Although the initial idea behind QuO
was to support QoS and QoS-based adaptation within the
context of distributed applications[20], QuO has evolved to
a general purpose advanced middleware for auto-adaptive
distributed systems. The QuO technology suite includes
specification languages[13] and code generation tools to de-
fine adaptive behavior and a runtime system[16] to support
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it. Over the years, we have used QuO to provide adapta-
tion to meet real time constraints[2] and to provide defen-
sive responses against cyber attacks[9] in addition to more
traditional QoS oriented adaptation. We have captured vari-
ous adaptive middleware patterns[7] and have also used as-
pect oriented techniques to introduce adaptive behavior to
existing applications[5]. In addition to numerous technol-
ogy demonstrations, we performed measurement and as-
sessment experiments to evaluate the effectiveness of our
adaptive capabilities[12]. We have also been engaged in
various successful technology transfer efforts where more
mature components of our technology are integrated into
advanced military systems.

With a relatively better understanding of our current ca-
pability and its utility, we are continuing to investigate
further enhancements as well as the theoretical underpin-
nings of adaptive distributed systems. Our position on auto-
adaptive distributed systems can be summarized as follows.
First, we take a middleware-centric approach to build auto-
adaptive behavior into distributed systems. Middleware of-
fers the ability to monitor and control both the application
and the infrastructure, and makes it possible to introduce
the adaptive behavior with minimal changes. Second, we
believe that auto-adaptive behavior is crucial for survivabil-
ity and in this context auto-adaptive behavior must inte-
grate and coordinate the services and capabilities of mul-
tiple mechanisms that are normally part of the original ap-
plication. Third, we believe that a systematic, modular and
reusable way to build and integrate auto-adaptive behavior
is necessary for making auto-adaptive capabilities useful in
a practical way. Finally, we view that a careful specification
and evaluation of the claims made by auto-adaptive mech-
anism is a prerequisite for its wide acceptance in real life
applications.

In this paper we present an abbreviated view of our ex-
perience in developing and evaluating auto-adaptive dis-
tributed applications. We will focus on the use of auto-
adaptive capabilities in terms of defending against cyber
attacks, and in particular we will present a narrow sam-
ple of adaptive responses that make use of network-based



tools and mechanisms. The rest of the paper is organized as
follows. Section 2 describes the QuO adaptive middleware
in short. In the APOD project we investigated the use and
effectiveness of auto-adaptive capabilities in defending the
application against attackers, a process we call defense en-
abling. Section 3 describes the network oriented adaptive
responses that we developed in this project. Section 4 de-
scribes various experiments we carried out in order to eval-
uate the effectiveness of such adaptive behavior in defense.
Section 5 concludes the paper.

2 QuO Adaptive Middleware

QuO is a middleware framework for building applica-
tions that are aware of their environment and can adapt au-
tomatically to changes in it. QuO applications can spec-
ify their non-functional requirements (e.g., security, perfor-
mance, or dependability requirements), measure what is be-
ing provided, access interfaces for controlling the desired
level of service , and adapt to changes in the environment.

QuO has been used extensively in defense enabling be-
cause of its support for adaptation and its capability to in-
tegrate various mechanisms together. Building defense in
middleware separates the specification and implementation
of the defense from the functional aspects of an application.
This separation facilitates the reuse of parts of the defense
across multiple applications.

The QuO middleware framework provides a set of high-
level languages known as QDLs (Quality Description Lan-
guages) as well as the runtime components needed to sup-
port them. QDLs take the same level of abstraction as In-
terface Description Languages in the DOC paradigm. QDL
allows systematic specification of both an application’s QoS
requirements and the adaptive responses to take when these
requirements are not met. Although designed initially to
capture traditional application level QoS aspects such as re-
sponse time, number of frames in a video transmission, etc.,
QDL can be used to capture any non-functional require-
ment that is important for an application. QDL makes auto-
adaptive systems easier to create and allows the designers
to focus on getting how and when to adapt while relieving
themselves of functional issues while they do so.

3 Auto-Adaptive Network Defenses in APOD

This section describes a sample of the auto-adaptive re-
sponses that were implemented in the APOD (Applications
that Participate in their Own Defense) project. The focus is
mostly on behavior that observes essential network param-
eters, controls network resources to yield a better defense,
and reacts to network related problems such as bandwidth
exhaustion through flooding or TCP stack attacks.
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Figure 1. Integration of mechanisms and local
tactics in an overall defense

We first describe the mechanisms that offer network-
based capabilities used in defense. Next, local tactics are
described that provide fast reactions based on local knowl-
edge. Coordination of multiple tactics via a defense strategy
concludes this section.

3.1 Defense Mechanisms

We use the following adjustable defense mechanisms as
a basis for our adaptation:

� Intrusion Detection - Snort [14]

� Firewalls - Netfilter/Iptables [10]

� TCP Stack Probes - Netstat [15]

� Virtual Private Networks - FreeS/WAN [1],IPsec [4],
openssh [11], and Zebedee [19]

� Bandwidth Reservation Schemes - RSVP [13], Se-
curity Enhanced RSVP (SERSVP)[18]

� Traffic Shaping - Iproute2 [3]

Each mechanism performs a specific security related
task: Snort provides attack alerts, Iptables can block traf-
fic, Iproute2 rate limits traffic.

3.2 Adaptive Response as Defense Tactics

A simple use of network-centric defense mechanisms in-
volves reactive responses with fairly local scope that utilize
the capabilities of a small number of mechanisms. Such tac-
tics tend to use one mechanism as a sensor and use a second
mechanism for reaction. Figure 1 summarizes a sampling
of the tactics we have investigated in APOD.

Many local tactics are highly reusable and self-
contained. Although their effectiveness in prolonging an
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application’s useful life may be limited in isolation, local
tactics are quite effective as components of larger, overar-
ching strategies.

The current set of tactics consists of the 4 different de-
fense behaviors that adapt due to attacks:

� Choking TCP Connection Floods - This tactic, used
against TCP connection floods, uses Netstat in combi-
nation with a threshold counter to sense TCP connec-
tion floods. It then responds by blocking traffic from
the suspected source of the flood. This defense tactic
is intended to react quickly, however, its actions may
have a relatively high false-positive rate in the presence
of mislabeled or spoofed messages.

� Blocking Suspicious Traffic - This tactic combines the
Snort network intrusion detection system with the Ipt-
ables Linux firewall to block traffic to and from a ma-
chine.

� Containing ARP Cache Poisoning - The ARP spoof
defense continuously monitors the mapping of MAC
to IP addresses. Upon detecting an attack, the cache
is reset with the correct values and traffic to and from
offending MAC addresses is blocked.

� Squelching Insider Floods - This defense mechanism
stipulates the notion of boundary controllers to con-
tain floods. The flood containment tactic (running on
a boundary controller) continuously monitors outgo-
ing traffic via Iptables and calculates throughput met-
rics such as packets/second and bits/second. During
a calibration phase, expected mean values are saved
internally and used as a baseline during normal oper-
ation. Comparisons of means between observed and
expected parameters are executed at regular intervals
to determine whether the observed outgoing traffic is
significantly higher than expected. If so, routing con-
figurations at the boundary controllers are changed to
rate limit outgoing traffic.

Not all defensive tactics need to involve reactive adap-
tation. A case in point is a defense mechanism called Port
and Address Hopping. Port/Address hopping is a dynamic
tactic that constantly changes a service’s TCP identity, i.e.,
its IP address and TCP port. The intention is to both hide
the service’s real identity and confuse the attacker during
reconnaissance. An additional benefit of this tactic is that
it increases the likelihood of detecting an attacker. Note
that the scope of this tactic is not local anymore since the
hopping service and its consumers will need some kind of
coordination.

3.3 Defense Strategies

The individual adaptive responses described as part of
local tactics are not enough to effectively defend critical ap-
plications. Multiple tactics are often required to address an
application’s survivability requirements. Figure 1 illustrates
how APOD allows one to combine individual mechanisms
and tactics into higher-level defense strategies.

Tactics and mechanisms focusing on different aspects of
the system need to coordinate in order to successfully work
together. For example, Port Hopping frequently changes
the destination ports of packets, which could be interpreted
by Snort as a port scan in the absence of coordination be-
tween the two mechanisms. Therefore, more sophisticated
defense strategies involve coordination among constituent
(sub-)strategies to be built into an overall defense. We de-
scribe an example of such an overarching strategy in this
section.

The basic objective of the top-level strategy is to increase
an application’s survivability through more coordinated de-
fense behavior. It assumes that the existing infrastructure,
including operating systems and networks, is hardened to
a reasonable degree. This hardening forms the first line of
defense. Defense enabling builds more dynamic responses
on top of a hardened foundation, assuming the availability
of many key network technologies, including IPsec VPNs,
ssh tunnels, firewalls, and RSVP reservations.

The defense strategy aims to significantly improve the
first line of defense by managing the shortcomings and fail-
ures of the protection it provides. There are three aspects of
this strategy that can be termed as sub-strategies. They are:

� Outrunning Component Failures: Replicates key ap-
plication components and intelligently places new
replicas on a suitable hosts upon noticing component
failures.

� Attack Containment: Isolates host intrusions and
network-based distributed denial of service attacks and
stops their propagation.

� Continuous Unpredictable Changes: Places strict time
constraints on the usefulness of obtained attack infor-
mation by constantly changing unpredictably.

We explain the auto-adaptive features of these sub-
strategies in more detail for the remainder of this section.

3.3.1 Outrunning Component Failures

Replicating components allows the system to continue even
if some of the replicas fail. Consumers of data from
the replicated components are unaffected by the loss of a
replica. We can mask component failures by restarting new
replicas to replace the ones that have failed . The outrun

3



sub-strategy restarts replicas on hosts believed to be more
secure and therefore keeps them away from attackers.

Within APOD we use a self-stabilizing software bus
(“bus” for short) to tolerate crash failures. The outrun sub-
strategy interfaces with the bus and, upon detecting a replica
death, selects a new host for the replacement replica. The
host is picked from a list of possible candidates by searching
for a host which is hard for the attacker to infiltrate based
on the defense’s current knowledge of the attack state. The
sub-strategy gives higher preference to hosts located in a
different security domain, i.e., on a different IP subnet, rel-
ative to the observed fault. Further network centric infor-
mation, such as whether a network level intrusion has been
observed on the candidate or its network, is also considered.

3.3.2 Attack Containment

This sub-strategy uses a combination of tactics to prevent an
attacker from being able to attack large parts of the system
by taking over a single part of it. This directly relates to the
notion of security domains to split the system into indepen-
dent privilege realms. In the Quarantine Hosts tactic, indi-
vidual machines are treated as security domains, and con-
tainment involves shutting down a machine upon detecting
an intrusion. This behavior prevents an attacker who gains
root privileges on one essential server from easily spreading
the same attack to remaining servers.

Components implementing this tactic run on all applica-
tion hosts and coordinate their actions using the bus. The
components implement the Block Suspicious Traffic tactic
combined with coordination logic to consistently block at-
tacks and prevent self-inflicted denial of service.

Upon detecting a port attack on host X, the Attack Con-
tainment component checks whether the system is in a de-
nial of service mode or experiencing a common mode fail-
ure by checking how many hosts had been infiltrated by the
same attack before. In the absence of denial of service at-
tacks, the source of the attack packet is noted and commu-
nicated to all other interested components. Upon receiv-
ing the attack notification, the component on host X tries
to initiate an automatic host shutdown to prevent the infil-
trated system from being using as a launch pad for further
attacks. In addition, all other components block traffic to
and from X. To prevent self-inflicted denial of service, the
components only contain up to a certain percentage of ma-
chines. The exact number can be picked randomly during
runtime. After exceeding the limit, the Attack Containment
component only issues recommendations to the outrunning
sub-strategy which in turn avoids starting new replicas on
infiltrated hosts, given that better choices are available.

To contain insider floods, the Squelch Insider Floods tac-
tic is deployed on boundary controllers on each LAN. Since
this defense only protects against floods originating from a

LAN protected by a boundary controller, SERSVP is used
in addition to defend against external floods of inter-LAN
links. Finally, the boundary controllers are linked with host
defenses to implement a Trace Back Containment policy. If
a boundary controller gets notified that a host H within its
domain has been marked suspicious, it will block traffic to
and from H closest to H’s source.

3.3.3 Continuous Unpredictable Changes

Sophisticated attackers often spend a large amount of effort
gathering information about essential services. Under the
assumption that determined attackers will get any informa-
tion given enough time the defense sub-strategy described
here tries to render information obtained by attackers harm-
less by changing it frequently. This has the added benefit
that the use of stale information can be used to raise alerts
to intrusion detection systems.

This sub-strategy has much in common with the reac-
tive version of the outrunning sub-strategy described above.
A proactive outrunning sub-strategy would keep moving
objects from host to host, effectively keeping address and
port information dynamic and hard to determine. This sub-
strategy takes this notion further and attempts to make other
aspects of the system, including its adaptive responses dy-
namic.

Timeliness is a central aspect of this defense. On one
hand, a high rate of change results in high overhead. On
the other hand, infrequent change might allow an attacker
to gather information and execute and attack within one re-
fresh cycle. The sub-strategy has to be flexible enough to al-
low one to describe this trade-off upon deployment. Exam-
ples of this sub-strategy include port and address hopping,
unpredictable server selection for client server interactions,
and unpredictable network route selection for connections.

Although this sub-strategy is proactive, a reactive ver-
sion may make sense if the defense can survive the attack at
hand. As in replication, a system which relocates replicas
constantly might have unnecessary overhead compared to a
system which starts a new replica unpredictably in a clean
domain only upon noticing a fault.

4 Experimental Evaluation

As APOD was developed we conducted various experi-
ments to test whether it was effective in protecting an ap-
plication. We used these experiments to see how the ideas
of auto-adaptation and survivability held up under attack.
This evaluation took place in multiple stages throughout the
project and involved both internal testing as well as internal
and external Red Teaming (testing by parties not involved
in the development).
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Initially, the APOD developers used logical argument
construction techniques to derive a design of defense mech-
anisms and strategies. Next, we rapidly prototyped parts
of the strategy and subjected them to internal Red Team
testing by a non-APOD developer. This early experimen-
tation yielded many useful insights into what is needed to
stay survivable in the presence of real attacks. Towards
the end of the APOD project, the FTN/DC continuous ex-
perimentation program[6, 17] conducted two formal Red
Team experiments to evaluate the maturity and applicability
of APOD’s auto-adaptive middleware approach to dynamic
defense. The next two sections examine the experiments
carried out and the results we collected from them.

4.1 Red Team Experiments

The overall goal of these experiments was to investigate
and quantify the ability of defense enabling to provide dy-
namic automated defense of a representative application,
an image-serving system, in a realistic, distributed environ-
ment.

The application used in the experiments is representa-
tive of many applications which share data between mul-
tiple parties in a timely manner. Both clients and servers
publish their information needs and information availability
to an information broker, which connects clients to servers.
Clients then directly interact with the servers to get the de-
sired information.

The first experiment (APOD-1) investigated how defense
enabling can help the image serving application survive at-
tacks that damage the broker component. The second ex-
periment (APOD-2) expanded the investigation of APOD-1
to include attacks that attempt to disrupt the image serving
application by flooding network links between routers.

The remainder of this section focuses on describing ex-
perimental results regarding network-level mechanisms and
strategies. See [9, 8, 12] for further details about the exper-
iments, including hypotheses, flags, rules of engagements,
metrics, data analyses, and attacks.

4.2 Experiment Results

The APOD-1 experiment implemented replication in
combination with the host containment strategy, utilizing
Snort and Iptables in a coordinated version of the Block Sus-
picious Traffic tactic.

The Red Team attempted to exploit the defense against
itself to capture the flags. For instance, one aspect of the
overall defense strategy was to sacrifice a host from which
suspicious traffic was detected. The Red Team attempted to
misuse the system’s auto-adaptation logic and have the sys-
tem sacrifice all the hosts. This attack did not work because
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Figure 2. Time to Denial by Live Attack

the auto-adaptive strategy used a threshold scheme to avoid
such self-inflicted denial of service.

Successful attacks turned out to be multi-staged, com-
posed of sub-attacks, and executed in a coordinated way,
with each sub-attack aimed at achieving a partial goal to-
wards capturing the flag. The coordination between sub-
attacks required timing and in some cases the defense was
able to completely withstand the attack. Despite the fact
that the Red Team was able to eventually capture the denial
flag most of the time, APOD-1 demonstrated that the auto-
adaptive features, even in their early stages of development,
integrated with the subject application improved its immu-
nity to sustained attack for non-trivial time intervals at an
acceptable cost.

Many scripted attacks relied on transient information
such as TCP ports to work properly, which was disclosed
to the Red Team for practical purposes. However, dynamic
defenses to prevent attackers from obtaining such informa-
tion in reality are an important aspect of the defense. The
Outrunning Component Failures strategy was extended to
accommodate a proactive mode in which replicas get con-
stantly relocated to minimize the usefulness of information
about their location obtained by attackers.

In APOD-2, the new defense against TCP connec-
tion floods was incorporated. SERSVP reservations and
Squelching Insider Floods were added for tolerating flood-
ing of network links.

SERSVP was successful at keeping bandwidth reserva-
tions up during most of the attacks. The added security pro-
vided by SERSVP was able to minimize effects of replay
attacks on service degradation. The TCP connection flood
defense was tested by the Red Team and was found to be
effective. No outbound flooding attack was attempted by
the Red Team, which left this part of the defense strategy
untested.

The defended application held up well against a wide
range of attacks in APOD-2 by detecting the attack or its
effect on the system and mounting autonomic adaptive re-
sponses in defense. As seen in figure 2 on average the Red
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Team required 45 minutes to break the defended applica-
tion with a live attack. A scripted attack took on average 19
minutes where an undefended application would have suc-
cumbed almost immediately. Further analysis showed that
APOD has a low false-positive rate and adapts quickly once
an attack has been detected. More data and in depth analysis
can be found in [9, 8, 12].

5 Conclusion

Our experience with the QuO adaptive middleware re-
inforces our emphasis on a middleware-centric approach to
auto-adaptive distributed systems. Advanced middleware
such as QuO can be used to provide structure to the spe-
cific adaptations used to provide survivability. Our experi-
ence in the APOD project also provides a positive indication
that auto-adaptive behavior making use of multiple tools or
mechanisms can be easily integrated with an application.
The APOD experiments, in a limited way, showed that such
adaptive behaviors can be used as a basis for enabling useful
defensive responses to attacks. We were also able to encap-
sulate and deploy useful auto-adaptive behavior as middle-
ware components. However, auto-adaptive distributed sys-
tems for survivability is a large research space, which we
are continuing to explore. A representative sample of issues
that need investigation includes a) introducing more power-
ful and more flexible auto-adaptive capabilities, b) manag-
ing distributed coordination, trust, and mutual interference
among various auto-adaptive responses and c) making auto-
adaptive distributed capabilities more reusable and robust
without adding additional vulnerabilities.
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