GNUnet — anonymity for free

Krista Bennett, Christian Grothoff, Tzvetan Horozov, and Ioana Patrascu

Department of Computer Sciences, Purdue University
{k1b,grothoff ,horozov,patrascu}@cs.purdue.edu
http://gecko.cs.purdue.edu/GNUnet/

Abstract. This paper describes how anonymity is achieved in GNUnet,
a framework for anonymous distributed and secure networking.

We describe a new scheme for anonymous transfer of data which achieves
better anonymity guarantees than traditional indirection schemes and is
more efficient. While the building blocks of our technique used to achieve
anonymity are identical to previous work, we offer a new perspective on

how to perceive and measure anonymity.
THIS PAPER IS NOT FINISHED AND IS PROVIDED ONLY AS A

REFERENCE FOR GNUNET DEVELOPERS AND USERS AT THE
MOMENT.

1 Introduction

Large public networks present a challenge to any system that needs to provide
security guarantees to its users. This is especially true because the widely used
TCP/IP protocols [6] lack mechanisms for authentication and confidentiality [1].
The primary applications for distributed applications are computation and data
transfer. In this paper, we focus on anonymous data transfer. The traditional
methods of transferring files over networks have serious drawbacks which are
partially caused by the underlying network technology. Some of these drawbacks
include:

— Communications are not anonymous. In general, the sender, the receiver and
intermediaries (e.g. routers) are exposed and easily observed.

— Data transfers can be intercepted and manipulated. Application-level pro-
tocols such as ssh [13] and ssl [7] address this issue. For this paper, we will
assume that data transfers between participating hosts are safely encrypted
and that participating hosts are properly authenticated.

In this paper we first describe our assumptions and the requirements for anonymity
that we try to fulfill. Section 3 describes related work. We then describe how
anonymity is achieved in GNUnet, thus allowing participants to avoid liability.
Finally, parts of the GNUnet implementation relating to anonymity are discussed.

2 Basic Assumptions and Definitions

In this paper we assume that queries and content are sent encrypted though the
network such that neither the node sending back the reply nor any intermediaries
can decrypt them. This is guaranteed by a scheme described in [2].

2 K. Bennett, C. Grothoff, T. Horozov, I. Patrascu

2.1 Assumptions about the Network

In this section we describe the assumptions made about the underlying network
(GNUnet) that is supposed to facilitate the anonymous communication. While
GNUnet is an open network and every host on the internet could join it, we
distinguish between adversaries that participate and adversaries that merely
observe.

We assume that communication between the hosts in the network is confiden-
tial, such that no hosts outside the network can even observe the meta-data that
identifies the type of information (e.g. query or content) that flows through the
network. All communications between hosts are also authenticated. Availability
is guarded by an accounting scheme that is based on this link-to-link authenti-
cation and that does not require end-to-end knowledge about transactions.

2.2 Deniability

A weak form of a man-in-the middle attack occurs if a malicious host joins the
network (thereby forming a link). The attacker could also intercept an exchange
of public keys and join the network claiming false IPs. Because identities in
GNUnet are public keys, both approaches are equivalent in their impact on the
network.

A very powerful adversary could prevent a node from connecting to any node
that is not controlled by the attacker. If the attacker is able to ensure that the
victim is only able to connect to nodes controlled by the adversary, the victim
is obviously unable to communicate anonymously as every communication that
does not originate from the adversary must originate from the victim. The best
protection that we can offer in this situation is to make it hard for the adversary
to find out what the victim was trying to do. We call this property deniability.

The argument above demonstrates that in order to guarantee any form of
anonymity, we must assume that every node knows and is able to communicate
with at least one other node that is not controlled by a malicious adversary. It
is sufficient to assume that this node is controlled by an adversary that does not
collaborate with the adversary controlling all the other connections.

Given this system, an adversary can see any communication between two
nodes, but not decrypt that communication. An adversary can join the network
and then observe and change parts of the meta-information that flows through
the network. In particular, an adversary can determine if a query or content was
sent. The only restriction on the adversary (other than not being able to break
cryptographic primitives) is that it does not control all the hosts that a node in
the network communicates with.

2.3 Anonymity

We say that a communication is anonymous if no adversary can say with cer-
tainty which two partners were the ultimate source and the ultimate destination
of the communication. The adversary may also take the place of the source or

GNUnet — anonymity for free 3

the destination. Anonymity can be measured by determining the probability that
a certain host was the source (or destination) of a communication. We reject as
frivolous any categorization of degrees of anonymity. The question of whether or
not a system is sufficiently anonymous for a specific application depends entirely
on the purpose.

It is important to note that we put the burden of proof on the adversary.
The adversary must prove that a communication originated from us. On the
other hand, if the legal system requires us to disprove being the origin, anonymity
is essentially outlawed.!

2.4 Efficiency

The efficiency of an anonymous network depends on the computational over-
head, the bandwidth required (relative to the amount of data transferred) and
the number of communications that must be performed. The number of commu-
nications gives an estimate of the delay for an operation.

The computational overhead is dominated by the encryption time in all sys-
tems and is not discussed further in this paper. Systems that do not rely on
confidential or authenticated communications between the nodes are obviously
open to sniffing attacks and are thereby not suitable for the problem at hand.

3 Related Work

Traditionally, indirection has frequently been used in order to achieve anonymity
[4,14,10]. Forwarding queries from other hosts allows users to deny that a packet
originated from a particular host (assuming the adversary was not able to per-
form full-traffic analysis). The principle of indirection applies to queries as well
as to replies.

Indirecting all communications is very costly. For example, in Freenet [5], the
number of indirections is determined by the length of the search path that the
query takes until a host that has the content is found. If the search path has
length [, there are, thus, [transfers of the content. If the content is large enough,
the traffic overhead is then (I — 1) - s where s is the size of the content.

Other systems, like Crowds [11], allow the user to set the number [of in-
directions that the system should aim for. While the traffic overhead is again
(I — 1) - s, the I can be tuned. The assumption here is that a larger n increases
the anonymity of the system.

In Crowds the authors describe a network where n hosts indirect commu-
nications with a probability p;. The authors then argue about the probability
that a collaborating node receives a communication from the node that actually
sent the request.

! Anonymity would require us to prove that a communication did not originate from
us. Because the communication did originate from us, we would have to construct
a false proof. The judge would, obviously, reject any kind of proof that could be
wrong.

4 K. Bennett, C. Grothoff, T. Horozov, I. Patrascu

The authors of Crowds assume that all nodes are equally active and thus
equally suspicious. Even if the adversary has only ¢ nodes under control, traffic
analysis may give much better data on which node is responsible for the query
— even under the assumption that traffic between the n — ¢ non-malicious nodes
cannot be decrypted. Sending noise to make the traffic analysis harder is not
discussed and would, of course, increase the network load beyond (I — 1) - s.

All systems providing anonymity that we know of are based on these princi-
ples and suffer from the same basic drawbacks as described above. The overhead
is usually on the order of (I — 1) - s.

4 Anonymity in GNUnet

In this section, we describe how anonymity is achieved in GNUnet. In order to
be able to evaluate the anonymity guarantees that GNUnet provides, we first de-
scribe a new perspective on how indirecting communications result in anonymity.
Then we describe the scheme deployed in GNUnet and discuss its guarantees and
efficiency.

4.1 Hiding the Initiator of Activity

Consider the following scenario illustrated in figure 1. In this scenario a node
receives two queries and sends three: In this picture, the two nodes that send their

Fig. 1. Hiding

queries are exposed. The node A can correlate these nodes with their queries;
a traffic analysis reveals that B and C sent a query. If A is allowed to forward
a query twice, traffic analysis alone cannot reveal if A sent a new query or was
merely indirecting.

In this sense, indirections do not hide the senders; instead, indirections obfus-
cate what the node that is indirecting is doing. No scheme that tries to achieve

GNUnet — anonymity for free 5

anonymity on an observable network can hide the fact that a node is participat-
ing. The best a scheme can do is guarantee that no adversary can distinguish
activity that a node initiates from mere participation in the protocol.

As the above example demonstrates, a node can hide its activities by indi-
recting activities from other nodes.

4.2 Anonymity Guarantees

In order to answer the question of how strong the anonymity guarantees are
that indirection can provide, some additional constraints must be considered.
The more traffic a node A sends into the network, the more indirected traffic
is needed by A to divert from the traffic A generated itself. If node A injects n
queries into the system and indirects m queries from other users, then a passive
adversary can guess with a probability of —*— that a query originated from that
user.

If the adversary uses timing analysis, it is possible that the adversary may
be able to exclude certain queries that were indirected a long time ago. “Long”
here depends on the potential delay that a query may commonly face in a node.
Nodes can delay queries for random amounts of time in order to make this timing
analysis harder. Delays for excessive amounts of time make the query useless and
indirecting it equivalent to producing noise (with the exception that other nodes
will not perceive it as such).

Queries that originated from an active adversary and were received by the
adversary can also not be counted for m, as the adversary knows that these
queries did not originate from A. As we assumed at the beginning, every node
always interacts with at least one non-malicious node and thus is able to receive
queries that do not originate from the adversary.

4.3 Malicious Hosts Improve Performance

Suppose a malicious host B in GNUnet does not change the sender address A of
a query to its own address, but preserves the original address. In that case, the
recipient C' of that indirection can determine that B indirected the query, and
C' can eventually send the reply directly to A (see figure 2).

Notice, that while A and C now know each other, they can not be certain
that the query originated from A or that the reply originated from C. Both A
and C could just be nodes that obey the protocol and indirected the query (or
the reply). Because the anonymity of A and C' depends on how many packets
they indirect for others, B did not damage their protection. On the other hand,
B did damage its own protection. C' is now able to tell that this particular query
did not really originate from B; thus, C' now has a higher chance of guessing
which traffic actually orginated from B.

The malicious behavior from B did not cost A or C' anything. However,
because the reply is not indirected via B, the total amount of traffic that was
produced has been reduced thus allowing this “malicious” behavior to be used
to improve performance.

6 K. Bennett, C. Grothoff, T. Horozov, 1. Patrascu

C

Fig. 2. Indirecting Replies

While this technique represents an improvement the performance gain could
be even higher. Because A and C needed to communicate, A may decide to send
the next query directly to C. If A is likely to send many related queries (related
in the sense that the replies are likely to be on the same host), it is reasonable
to assume that C' will often be closer to the location of the document than B
is.2 This way, the number of hops between A and the content is decreased, thus
speeding up the download process even further.

Let us suppose B is indirecting m queries and sending n new queries for its
own user. As stated above, this would yield a probability of - that any given
query originates from B. If m is sufficiently large compared to n, this security
may not be required by B. Indirecting m queries and m replies causes a great
deal of work for B. If B chooses not to indirect k& queries, and, instead keeps the

original sender, the probability is increased to -T—.

5 Implementation

The implementation chosen in GNUnet is based on the philosophy outlined above.
An implementation is available on our website

http://www.gnu.org/software/GNUnet/.

5.1 Joining the Network

A node that wants to join the network must know at least one public key (and
Internet address) of another trusted node. The other node must be trusted in
the sense that it is not a strong attacker that advertises a GNUnet network that
is entirely under the adversary’s control (in that case, the adversary could keep
track of what the new node is doing). If the new node has several initial public

2 The encoding of content in GNUnet [2] requires many related queries before a down-
load of a single file can be completed. In other systems, queries may be related less
often.

GNUnet — anonymity for free 7

keys of other nodes, it is sufficient if one of these does not collaborate with the
adversary.

Each node in GNUnet has an RSA key pair. The nodes use these keys to
exchange 128-bit session keys that are used to establish a link-encryption infras-
tructure between the nodes. We are using Blowfish for the symmetric cipher.
Nodes periodically sign their current Internet address (together with a times-
tamp) and propagate packets with public keys and Internet addresses. Except for
the initial exchange of public keys that occurs when a node joins, this exchange
of public keys can also use the encrypted channels.?

5.2 Queries and Replies

Nodes indirect queries and can thereby hide the queries originating from them-
selves. Every node uses a combination of network load (and other factors that are
internal to the node) to determine how often to indirect queries. If the general
network load is high, then the node indirects fewer queries, assuming that its
own traffic is already well hidden. If the network load is low, then more queries
are indirected.

Several queries are usually sent out in a group, potentially with other data.
Grouping several queries to a larger packet introduces delays and decreases the
per-query overhead. Encrypted packets containing queries can also not be dis-
tinguished from packets containing other data because the grouping makes them
equivalent in size.

Each query contains the address of the host where the reply is to be sent.
While originally this was the address of the sender of the query, hosts that
indirect the query must change this sender address to match their own, because
otherwise these indirected packets could be distinguished (by the receiver) from
packets that originate from the host itself, because they have a different return
address. The host must keep track of the queries that it indirected so that it
can forward a reply to the host where the query originally came from. This
statefulness of the routing is probably the biggest scalability issue in GNUnet.

5.3 GNUnet is Malicious.

In GNUnet, the “malicious” behavior described in the section 4.3 is considered
to be good. Nodes usually increase k if they receive more traffic than they are
willing to handle. Thus, if nodes receive a great deal of traffic, they can improve
their performance by reducing the number of packets they indirect. Because the
replies are significantly bigger than the queries, this behavior can improve the
situation, in particular, for bottlenecks in the network.

It is possible that this behavior could be attacked by flooding a host, A, with
traffic from a malicious host, M. Indirected queries originating from M do not
count toward m in the formulas given above because the adversary knows that
they do not come from A. If A decides that traffic is high and then starts to

3 In that case, this exchange can not be distinguished from noise for an eavesdropper.

8 K. Bennett, C. Grothoff, T. Horozov, 1. Patrascu

preserve the sender addresses of most queries from non-malicious hosts, m may
decrease so far that A can no longer hide its own n queries from being guessable
by M.

GNUnet guards against this attack by dropping queries from hosts that are
considered malicious. Malicious hosts are defined as all hosts that send excessive
amounts of queries (see also [3]).

This adaptive scheme can thereby give the same guarantees as the “always
indirect” systems, while being nearly as efficient as the non-anonymous “never
indirect” systems:

— If challenged, nodes can always claim that they indirected a query.

— Nodes that are very busy can still refuse to indirect, yielding the same load
as for the “never indirect” system.

— For nodes that are not busy, the extra load imposed by the indirection is not
a problem.

5.4 Choosing the Next Host

Whenever a GNUnet node receives a query it decides to how many hosts it will
forward the query based on its load (CPU, network), the local credit rating of
the sender, the priority of the query and some random factor. The number n
of hosts that will receive the query could be zero. The n hosts that will receive
the query are then chosen from the list of hosts that the node has established
connections with using a biased random selection process. The selection process
is slightly biased towards hosts where the hash of the hostkey is close to the
query using some metric. This is a variant of the algorithm used by Pastry [12,
9].

The query is not sent immediately to the next hosts. Instead, it is put in
a buffer that queues data that is to be sent to that host. The buffer is send
whenever it is full, a randomized timer goes off, or discarded if the node decides
that it is too busy (the protocol does not provide reliable delivery).

This behavior does not leak any information to an attacker as it is indepen-
dent from the original sender (the originator has even an identical chance to
receive the forwarded query as everybody else has), it does not reveal anything
about the potential source of the reply (the indirecting host does not know that
source) and reveals very little about the query: the bias takes 32 of the 160 bits
of the hashcode into account. Thus 2!28 queries would result in the same biased
behavior, even under the assumption that the bias would be sufficient to identify
the 32 bit.

Replies are indirected back on the path that the query took originally. This
does not reveal much about the sender. One attack would be a timing analysis
that looks at the time that passes between query and reply. That time could be
used to estimate the distance to the sender. In GNUnet, the sender introduces
some delay on the reply, making this harder. Furthermore, hosts choose the
routes for a query at random, making the timing results hard to reproduce.

GNUnet — anonymity for free 9

5.5 Measuring Anonymity

From the description above it should be clear that the degree of anonymity that
GNUnet offers can be configured. If a node injects a query from the user in only
1 of 1000 indirected transactions it will surely be more anonymous than if it
injects a query in 1 out of 10 transactions.

Still, the exact degree of anonymity, the probability with with the adversary
can say who was the originator, can not be computed in the general case. The
reason is that this would require knowledge about how much traffic is controlled
by the adversary. As stated in section 2.2, if the adversary controls the traffic
of the entire network, it can determine with certainty from where an action
originated.

Estimating the number of adversary-controlled hosts in an open network
like GNUnet is obviously very difficult. Proving the authenticity of a remote
microprocessor [8] and ultimately the trustworthyness of a remote machine is
still an open problem.

GNUnet compensates for the impossiblitiy of guaranteing anonymity against
very powerful attackers by providing deniability [2]. Even if a powerful adversary
can find out who send a message, the adversary may still have no idea what the
message was about.

6 Conclusion

In this paper we have described why traditional schemes for anonymity are
both inefficient and, often, insufficient if traffic analysis is used. An adaptive
indirection scheme was described that is based on the current network load
which yields better anonymity guarantees and is more efficient.

References

1. S. M. Bellovin. Security problems in the TCP/IP protocol suite. Computer Com-
munication Review, 19(2):32-48, 1989.

2. K. Bennett, C. Grothoff, T. Horozov, and I. Patrascu. Efficient sharing of encrypted
data. In Proceedings of ASCIP 2002, 2002.

3. K. Bennett, C. Grothoff, T. Horozov, I. Patrascu, and T. Stef. Gnunet whitepaper,
2001.

4. David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84-88, 1981.

5. I. Clarke. A distributed decentralised information storage and retrieval system,
1999.

6. D.E. Comer and D.L. Stevens. Internetworking with TCP/IP Vol.II - Design,

Implementation € Internals. Prentice Hall, Englewood Cliffs, NJ, 1991.

K. Hickman. The ssl protocol. internet draft rfc, 1995.

Rick Kernell. Proving the authenticity of a remote microprocessor, 2002.

9. Y. C. Hu A. Rowstron M. Castro, P. Druschel. Exploiting network proximity in
peer-to-peer overlay networks.

® N

10

10.
11.

12.

13.
14.

K. Bennett, C. Grothoff, T. Horozov, I. Patrascu

M. Reed, P. Syverson, and D. Goldschlag. Proxies for anonymous routing, 1995.
Michael K. Reiter and Aviel D. Rubin. Crowds: anonymity for Web transactions.
ACM Transactions on Information and System Security, 1(1):66-92, 1998.
Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion and routing for large-scale peer-to-peer systems.

IETF Secure Shell (secsh) Working Group. Secure shell (secsh) charter., 1999.

P F Syverson, D M Goldschlag, and M G Reed. Anonymous connections and onion
routing. In IEEE Symposium on Security and Privacy, pages 44-54, Oakland,
California, 4-7 1997.

