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There are many methods for making a multicast protocol “reliable.” At one end of the
spectrum, a reliable multicast protocol might offer atomicity guarantees, such as all-or-
nothing delivery, delivery ordering, and perhaps additional properties such as virtually
synchronous addressing. At the other are protocols that use local repair to overcome transient
packet loss in the network, offering “best effort” reliability. Yet none of this prior work has
treated stability of multicast delivery as a basic reliability property, such as might be needed
in an internet radio, television, or conferencing application. This article looks at reliability
with a new goal: development of a multicast protocol which is reliable in a sense that can be
rigorously quantified and includes throughput stability guarantees. We characterize this new
protocol as a “bimodal multicast” in reference to its reliability model, which corresponds to a
family of bimodal probability distributions. Here, we introduce the protocol, provide a
theoretical analysis of its behavior, review experimental results, and discuss some candidate
applications. These confirm that bimodal multicast is reliable, scalable, and that the protocol
provides remarkably stable delivery throughput.
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PREFACE
Encamped on the hilltops overlooking the enemy fortress, the commanding
General prepared for the final battle of the campaign. Given the information
he was gathering about enemy positions, his forces could prevail. Indeed, if
most of his observations could be communicated to most of his forces the
battle could be won even if some reports reached none or very few of his
troops. But if many reports failed to get through, or reached many but not
most of his commanders, their attack would be uncoordinated and the battle
lost, for only he was within direct sight of the enemy, and in the coming
battle strategy would depend critically upon the quality of the information
at hand.

Although the General had anticipated such a possibility, his situation was
delicate. As the night wore on, he dispatched wave upon wave of updates on
the enemy troop placements. Some couriers perished in the dark, wet forests
separating the camps. Worse still, some of his camps were beset by the
disease that had ravaged the allies since the start of the campaign. They
could not be relied upon, as chaos and death ruled there.

With the approach of dawn, the General sat sipping coffee—rotgut stuff—
reflectively. In the night, couriers came and went, following secret protocols
worked out during the summer. At the appointed hour, he rose to lead the
attack. The General was not one to shirk a calculated risk.

1. INTRODUCTION

Although many communication systems provide software support for reli-
able multicast communication, the meaning given to “reliability” splits
them into two broad classes. One class of definitions corresponds to
“strong” reliability properties. These typically include atomicity, which is
the guarantee that if a multicast is delivered to any destination that
remains operational it will eventually be delivered to all operational
destinations. An atomic multicast may also provide message delivery
ordering, support for virtual synchrony (an execution model used by many
group communication systems), security properties, real-time guarantees,
or special behavior if a network partitioning occurs [Birman 1997]. A
criticism is that to obtain these strong reliability properties one employs
costly protocols, accepts the possibility of unstable or unpredictable perfor-
mance under stress, and tolerates limited scalability [Cheriton and Skeen
1993] (but see also Birman [1994], Cooper [1994], and van Renesse [1994]).
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As we will see shortly, transient performance problems can cause these
protocols to exhibit degraded throughput. Even with a very stable network,
it is hard to scale these protocols beyond several hundred participants
[Piantoni and Stancescu 1997].

Protocols belonging to the second class of “reliable multicast” solutions
focus upon best-effort reliability in very large scale settings. Examples
include the Internet MUSE protocol (for network news distribution) [Lidl et
al. 1994], the Scalable Reliable Multicast protocol (SRM) [Floyd et al.
1995], the XPress Transfer Protocol [XTP Forum 1995], and the Reliable
Message Transport Protocol (RMTP) [Lin and Paul 1997; Paul et al. 1997].
These systems include scalable multicast protocols which overcome mes-
sage loss or failures, but are not provided with an “end to end” reliability
guarantee. Indeed, as these protocols are implemented, “end to end”
reliability may not be a well-defined concept. There is no core system to
track membership in the group of participants; hence it may not be clear
what processes belong to the destination set for a multicast, or even
whether the set is small or large. Typically, processes join anonymously by
linking themselves to a multicast forwarding tree, and subsequently inter-
act only with their immediate neighbors. Similarly, a member may drop out
or fail without first informing its neighbors.

The reliability of such protocols is usually expressed in “best effort”
terminology: if a participating process discovers a failure, a reasonable
effort is made to overcome it. But it may not always be possible to do so.
For example, in SRM (the most carefully studied among the protocols in
this class) a router overload may disrupt the forwarding of multicast
messages to processes downstream from the router. If this overload also
prevents negative acknowledgments and retransmissions from getting
through for long enough, gaps in the message delivery sequence may not be
repaired. Liu and Lucas report conditions under which SRM can behave
pathologically, remulticasting each message a number of times that rises
with system scale [Liu 1997; Lucas 1998]. Here, we present additional data
of a similar nature. (Liu also suggests a technique to improve SRM so as to
partially overcome the problem.) The problematic behavior is triggered by
low levels of systemwide noise or by transient elevated rates of message
loss, phenomena known to be common in Internet protocols [Labovitz et al.
1997; Paxson 1997]. Yet SRM and similar protocols do scale beyond the
limits of the virtual synchrony protocols, and when message loss is suffi-
ciently uncommon, they can give a very high degree of reliability.

In effect, the developer of a critical application is forced to choose
between reduced scalability but stronger notions of reliability in the first
class of reliable multicast protocol, and weaker guarantees but better
normal-case scalability afforded by the second class. For critical uses, the
former option may be unacceptable because of the risk of a throughput
collapse under unusual but not “exceptionally rare” conditions. Yet the
latter option may be equally unacceptable, because it is impossible to
reason about the behavior of the system when things go wrong.
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The present article introduces a new option: a bimodal multicast protocol
that scales well, and provides predictable reliability even under highly
perturbed conditions. For example, the reliability and throughput of our
new protocol remain steady even as the network packet loss rate rises to
20% and even when 25% of the participating processes experience transient
performance failures. We also present data showing that the LAN imple-
mentation of our protocol overcomes bursts of packet loss with minimal
disruption of throughput.

The sections that follow start by presenting the protocol itself and some
of the results of an analytic study (the details of the analysis are included
as an Appendix). We show that the behavior of our protocol can be
predicted given simple information about how processes and the network
behave most of the time, and that the reliability prediction is strong
enough to support a development methodology that would make sense in
critical settings. Next, we present a variety of data comparing our new
protocol with prior protocols, notably a virtually synchronous reliable
multicast protocol, also developed by our group, and the SRM protocol. In
each case we use implementations believed to be the best available in terms
of performance and tuned to match the environment. Our studies include a
mixture of experimental work on an SP2, simulation, and experiments with
a bimodal multicast implementation for LANs (possibly connected by WAN
gateways). Under conditions that cause other reliable protocols to exhibit
unstable throughput, bimodal multicast remains stable. Moreover, we will
show that although our model makes simplifying assumptions, it still
makes accurate predictions about real-world behavior. Finally, the article
examines some critical reliable multicast applications, identifying roles for
protocols with strong properties and roles for bimodal multicast.

Bimodal multicast is not a panacea: the protocol offers a new approach to
reliability, but uses a model that is weaker in some ways than virtual
synchrony, despite its stronger throughput guarantees. We see it as a tool
to offer side by side with other reliability tools, but not as a solution that
“competes” with previous protocols.

2. MULTICAST THROUGHPUT STABILITY

In our work with reliable multicast we participated in the development of
communication infrastructures for applications such as stock markets (the
New York and Swiss Stock Exchanges) [Birman 1999; Piantoni and Stanc-
escu 1997] and air traffic control (the French console replication system1

called PHIDIAS). The critical nature of such applications means that
developers will have to know exactly how their systems behave under
expected operational conditions, and to do so they need detailed informa-
tion about how the reliable communication primitives they use will behave.
These applications also demand high performance and scalability. In par-
ticular, they often have a data transport subsystem that will produce a

1http://www.stna.dgac.fr/projects/phidias/
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sustained, fairly high volume of data considered critical for safe operation.
In the past, such subsystems were often identified as critical real-time
applications, but today’s computers and networks are so fast that the real
need is for stable throughput.

Our new protocol permits designers of such applications to factor out the
soft real-time data stream. Bimodal multicast will handle this high-volume
workload, leaving a less demanding lower-volume residual communication
task for protocols like the virtual synchrony ones, which work well in less
stressful settings. Because the communication demands of bimodal multi-
cast can be predicted from the multicast rate and a small set of parameters,
a designer can anticipate that bimodal multicast will consume a fixed
percentage of available bandwidth and memory resources, and configure
the system with adequate time for the virtual synchrony mechanisms.

Bimodal multicast is a good choice for this purpose, for several reasons.
First, as just noted, the load associated with the protocol is predictable and
largely independent of scale. The protocol can be shown to have a bimodal
delivery guarantee: given information about the environment—information
that we believe is reasonable for typical networks running standard Inter-
net protocols—our protocol can be configured to have a very small proba-
bility of delivering to a small number of destinations (counting failed ones),
an insignificant risk of delivering to “many” but not “most” destinations,
and a very high probability of delivering the message to all or almost all
destinations. Our model lets us tune the actual probabilities to match the
intended use. And we will show how to use the model to evaluate the safety
of applications, such as the ones mentioned above.

Secondly, our protocol has stable throughput. Traditional reliable multi-
cast protocols—atomic broadcast in its various incarnations—suffer from a
form of interference between flow control and reliability mechanisms. This
can trigger unstable throughput when the network is scaled up, and some
application programs exhibit erratic behavior. We are able to demonstrate
the stability of our new protocol both theoretically and experimentally. For
the types of applications that motivate our work, this stability guarantee is
extremely important: one needs to know that the basic data stream is
delivered at a steady rate and that it is delivered reliably.

To give some sense of where the article is headed, consider Figure 1. Here
we measured throughput at a healthy process in virtually synchronous
multicast groups of various sizes: 32, 64, and 96 members. One of these
members attempts to inject 7KB multicast messages at a rate of 200 per
second. Ideally, 200 messages per second emerge. But the graph shows that
as we “perturb” even a single group member by causing it to sleep for the
percentage of each second shown on the x-axis, throughput collapses for the
unperturbed group members. The problem becomes worse as the group
grows larger (it would also be worse if we increase the percentage of
perturbed members). In the experimental sections of this article, we will
see that the bimodal multicast achieves the “ideal” output rate of 200
messages per sec. under the same conditions, even with 25% of the
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members perturbed. Details of the experiment used to produce Figure 1
appear in the experimental section of this article.

As mentioned earlier, studies of SRM have identified similar problems.
In the case of SRM, networkwide noise and routing problems represent the
worst case. For example, Lucas, in his doctoral dissertation [Lucas 1998],
shows that even low levels of network noise can cause SRM to broadcast
high rates of retransmission requests and retransmitted data messages, so
that each multicast triggers multiple messages on the wire. Lucas finds
that the rate of retransmissions rises in proportion to the SRM group size.
Liu, studying other problems (but of a similar nature) proposes a number of
changes to SRM that might improve its behavior in noisy networks. Our
own simulations, included in the experimental section of this article,
confirm these problems and make it clear that as SRM is scaled up, the
protocol will eventually collapse, much as does the virtually synchronous
protocol shown in Figure 1.

What causes these problems? In the case of the virtually synchronous
protocols, a perturbed process is particularly difficult to accommodate. On
the one hand, the process is not considered to have failed, since it is
sending and receiving messages. Yet it is slow to acknowledge messages
and may experience high loss rates, particularly if operating systems
buffers fill up. The sender and healthy receivers keep copies of unacknowl-
edged messages until they get through, exhausting available buffering
space and causing flow control to kick in. One could imagine setting failure
detection parameters more aggressively (this is what Piantoni and Stanc-
escu [1997] recommend), but now the risk of an erroneous failure classifi-
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Fig. 1. Throughput as one member of a multicast group is “perturbed” by forcing it to sleep
for varying amounts of time.
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cation will rise roughly as the square of the group size. The problem is that
all group members can be understood as monitoring one another; hence, the
more aggressive the failure detector, the more likely that a paging or
scheduling delay will be interpreted as a crash. Thus, as one scales these
protocols beyond a group size of about 50–100 members, the tension
between throughput stability and failure detection accuracy becomes a
significant problem. Not surprisingly, most successes with virtual syn-
chrony use fairly small groups, sometimes structured hierarchically. The
largest systems are typically ones where performance demands are limited
to short bursts of multicasts, far from the rates seen in Figure 1 [Birman
1999].

Turning to SRM, one can understand the problem as emerging from a
form of stochastic attack on the probabilistic assumptions built into the
protocol. Readers familiar with SRM will know that the protocol includes
many such assumptions: they are used to prevent duplicated multicasts of
requests for retransmission and duplicated retransmissions of data, and to
estimate the appropriate time-to-live (TTL) value to use for each multicast.
Such assumptions have a small probability of being incorrect, and in the
case of SRM, as the size of the system rises, the absolute likelihood of
mistakes rises, causing the background overhead to rise. Eventually, these
forms of overhead interfere with normal system function, causing through-
put to become unstable. For sufficiently large configurations or loads, they
can trigger a form of “meltdown.”

We believe that our article is among the first to focus on stable through-
put in reliable multicast settings. Historically, reliable multicast split early
into two “camps.” One camp focused on performance and scalability,
emphasizing peak performance under ideal situations. The other camp
focused on providing rigorous definitions for reliability and protocols that
could be proved to implement their reliability specifications. These proto-
cols tended to be fairly heavyweight, but performance studies also empha-
sized their best-case performance. Neither body of work viewed stable
scalable throughput as a fundamental reliability goal, and as we have seen,
stable throughput is not so easily achieved.

The properties of the bimodal multicast protocol seem to be ideal for
many of the applications where virtual synchrony encounters its limits.
These include internet media distribution (such for radio and television
broadcasts, or conferencing), distribution of stock prices and trade informa-
tion on the floor of all-electronic stock exchanges, distribution of flight
telemetry data in air traffic control systems and military theater of
operations systems, replication of medical telemetry data in critical care
systems, and communication within factory automation settings. Each of
these is a setting within which the highest-volume data sources have an
associated notion of “freshness,” and the importance of delivering individ-
ual messages decreases with time. Yet several are also “safety critical”
applications for which every component must be amenable to analysis.
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3. A BIMODAL MULTICAST PROTOCOL

Our protocol is an outgrowth of work which originated in studies of gossip
protocols done at Xerox [Demers et al. 1988], the Internet MUSE protocol
[Lidl et al. 1994], the SRM protocol of Floyd et al. [1995], the NAK-only
protocols used in XTP [XTP Forum 1995], and the lazy transactional
replication method of Ladin et al. [1992]. Our protocol can be understood as
offering a form of weak real-time guarantee; relevant prior work includes
Cristian et al. [1985; 1990] and Baldoni et al. [1996a; 1996b].

The idea underlying gossip protocols dates back to the original USENET
news protocol, NNTP, developed in the early 1980’s. In this protocol, a
communications graph is superimposed on a set of processes, and neighbors
gossip to diffuse news postings in a reliable manner over the links. For
example, if process A receives a news posting and then establishes commu-
nication with process B, A would offer B a copy of that news message, and
B solicits the copy if it has not already seen the message.

The Xerox work considered gossip communication in the context of a
project developing wide-area database systems [Demers et al. 1988]. They
showed how gossip communication is related to the mathematics underly-
ing the propagation of epidemics, and developed a family of gossip-based
multicast protocols. However, the frequency of database updates was low
(at most, a few per second); hence, the question of stable throughput did not
arise. The model itself considered communication failures but not process
failures. Our work addresses both aspects.

In this article, we actually report on multiple implementations of our new
protocol. The version we study most carefully was implemented within
Cornell University’s Ensemble system [Hayden 1998], which offers a mod-
ular plug-and-play framework that includes some of the standard reliable
multicast protocols, and can easily be extended with new ones. This
plug-and-play architecture was important both because it lets our new
work sit next to other protocols, and because it facilitated controlled
experiments. Ensemble supports group-communication protocol stacks that
are constructed by composing microprotocols, an idea that originated in the
Horus project [Birman 1997; van Renesse et al. 1996].

Because we implemented this version of our protocol within Ensemble,
the system model is greatly simplified. An Ensemble process group exe-
cutes as a series of execution periods during each of which group member-
ship is static, and known to all members (see Figure 2, where time
advances from left to right, and each time-line corresponds to the execution
of an individual process). One execution period ends and a new one begins
when membership changes by the addition of new processes, or the depar-
ture (failure) of old ones. Below, we will discuss our new protocol for just a
single execution period; this restriction is especially important in the
formal analysis we present. The mechanisms whereby Ensemble switches
from one period to the next depend only on knowledge of when the
currently active set of multicast instantiations has terminated, i.e., stabi-
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lized. In our new protocol, this occurs at a given group member when that
member garbage-collects the multicasts known to it.

The second version of the protocol is more recent, and while we include
some experimental data obtained using it, we will not discuss it separately.
This implementation is the basis of a new system we are developing called
Spinglass, and operates as a free-standing solution. Unlike the Ensemble
solution, which we use primarily for controlled studies on an SP2 computer,
the newer implementation runs on a conventional LAN and is being
extended to also run in a WAN. The protocols are not identical, but the
differences are not of great importance in the present setting, and we will
treat them as a single implementation. Spinglass uses gossip to track
membership as well as to do communication [van Renesse et al. 1996], but
the behavior of the bimodal protocol is unaffected (formal analysis of the
combined gossip mechanisms is, however, beyond our current ability).

In the remainder of this article, we will refer to our new protocol as
pbcast: “probabilistic broadcast,” since “bimodal multicast” and the obvious
contractions seem awkward. A pbcast to a process group satisfies the
following properties:

—Atomicity: The protocol provides a bimodal delivery guarantee, under
which there is a high probability that each multicast will reach almost all
processes, a low probability that a multicast will reach just a very small
set of processes, and a vanishingly small probability that it will reach
some intermediate number of processes. The traditional “all or nothing”
guarantee thus becomes “almost all or almost none.”

—Throughput stability: The expected variation in throughput can be char-
acterized and, for the settings of interest to us, is low in comparison to
typical multicast rates.

—Ordering: Messages are delivered in FIFO order on a per-sender basis.
Stronger orderings can be layered over the protocol, as discussed in
Birman [1997]. For example, Hayden and Birman [1996] include a
protocol similar to pbcast with total ordering layered over it.

—Multicast stability: The protocol detects stability of messages, meaning
that the bimodal delivery guarantee has been achieved. A stable message

p

q

r

s

Fig. 2. Multicast execution periods in Ensemble. Initially, the group consist of p and q;
multicasts sents by p are delivered to q (and vice versa). R then joins and state is transferred
to it. After a period of additional multicasting, q fails; s later joins and receives an additional
state transfer. The period between two consecutive membership lists is denoted an “execution
period”.
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can be safely garbage-collected, and if desired, the application layer will
also be informed. Protocols such as SRM generally lack stability detec-
tion, whereas virtual synchrony protocols include such mechanisms.

—Detection of lost messages: Although unlikely at a healthy process, our
bimodal delivery property does admit a small possibility that some
multicasts will not reach some processes, and message loss is common at
faulty processes. Should such an event occur, processes that did not
receive a message are informed via an upcall. Section 5 discusses
recovery from message loss.

—Scalability: Costs are constant or grow slowly as a function of the
network size. We will see that most pbcast overheads are constant as a
function of group size and that throughput variation grows slowly (with
the log of the group size).

For purposes of analysis, our work assumes that the protocol operates in
a network for which throughput and reliability can be characterized for
about 75% of messages sent, and where network errors are iid. We assume
that a correctly functioning process will respond to incoming messages
within a known, bounded delay. Again, this assumption needs to hold only
for about 75% of processes in the network. We also assume that bounds on
the delays of network links are known. However, this last assumption is
subtle, because pbcast is normally configured to communicate preferen-
tially over low-latency links, as elaborated in Section 4.

Traditionally, the systems community has distinguished two types of
failures. Hard failures include crash failures or network partitionings. Soft
failures include the failure to receive a message that was correctly deliv-
ered (normally, because of buffer overflow), failure to respect the bounds for
handling incoming messages, and transient network conditions that cause
the network to locally violate its normal throughput and reliability proper-
ties. Unlike most protocols, which only tolerate hard failures, the goal of
our protocol is to also overcome bounded numbers of soft failures with
minimal impact on the throughput of multicasts sent by a correct process to
other correct processes. Moreover, although this is not a “guarantee” of the
protocol, a process that experiences a soft failure will (obviously) experience
a transient deviation from normal throughput properties, but can then
catch up with the others. Again, this behavior holds up to a bounded
number of soft-failure events. We do not consider Byzantine failures.

Although our assumptions may seem atypical of local-area networks, the
designer of a critical application such as an air traffic control system would
often be able to satisfy them. For example, a developer could work with
LAN and WAN links isolated from uncontraffic, high-speed interconnects of
the sort used in cluster-style scalable computers, or a virtually private
network with quality of service guarantees.

But our work appears to be more broadly applicable, even in conventional
networks. Here, we report on experiments with the Spinglass implementa-
tion of pbcast in normal networks, where we observed the protocol’s
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behavior during bursts of packet loss of the sort triggered by transient
network overloads. Although such events violate the assumptions of the
model, the protocol continues to behave reliably and to provide steady
throughput. One open question concerns the expected behavior of pbcast
when running over WAN gateways spanning the public Internet, where
loss rates and throughput fluctuate chaotically [Labovitz et al. 1997;
Paxson 1997]. Based on our work up to the present, it seems that Spinglass
can do fairly well by tunneling over TCP links between gateway processes,
provided that enough such links are available. We conjecture that although
the formal study of such configurations may be intractable, the idealized
network model is considerably more robust than the assumptions underly-
ing it would suggest.

4. DETAILS OF THE PBCAST PROTOCOL

Pbcast is composed of two subprotocols structured roughly as in the
Internet MUSE protocol [Lidl et al. 1994]. The first is an unreliable,
hierarchical broadcast that makes a best-effort attempt to efficiently de-
liver each message to its destinations. Where IP-multicast is available, it
can play this role. The second is a two-phase anti-entropy protocol that
operates in a series of unsynchronized rounds. During each round, the first
phase detects message loss; the second phase corrects such losses and runs
only if needed. This section describes the protocol; pseudocode is included
as Appendix B. We begin with a basic discussion but then introduce a series
of important optimizations.

4.1 Optimistic Dissemination Protocol

The first stage of our protocol multicasts each message using an unreliable
multicast primitive. This can be done using IP multicast or, if IP multicast
is not available, using a randomized dissemination protocol. In the latter
case, we assume full connectivity and superimpose “virtual” multicast
spanning trees upon the set of participants. Each process has a variety of
such pseudorandomly generated spanning trees for broadcasting messages
to the entire group; these are generated in a deterministic manner from the
group membership using an inexpensive algorithm. When a member broad-
casts a message, it is sent using a randomly selected spanning tree.2 This is
done by attaching a tree identifier (a small integer) to the message and
sending it to the sender’s neighbors in the tree. Upon receipt, those
members deliver the message and then forward it using the tree identifier.
This dissemination protocol can be tuned with respect to the number of
random trees that are used and the degree of nodes in the tree. Because all
of the messages are sent unreliably, the choice of tree should be understood
purely as an optimization to quickly deliver the message to many members.

2Although the tree that will be used for a given multicast execution period is not predictable
prior to when that period begins, the same tree will be used throughout the duration of the
execution period.
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If some members do not receive the message, the anti-entropy protocol still
ensures probabilistically reliable delivery.

In the Ensemble implementation of pbcast, the tree-dissemination proto-
col uses Ensemble’s group membership manager to track membership, but
this also limits scalability. Ensemble’s group membership system works
well up to a hundred members or so, and can probably be scaled to a few
hundred. As for the Spinglass version of pbcast, we currently use a
hand-configured multicast architecture, represented as a multicast routing
table used by the protocol; again, this makes sense for a few hundred
machines but probably not for larger networks. We see management of the
multicast dissemination routes for pbcast as a topic for which additional
study will be required.

4.2 Two-Phase Anti-Entropy Protocol

The important properties of pbcast stem from its gossip-based anti-entropy
protocol. The term anti-entropy is from Demers et al. [1988] and refers to
protocols that detect and correct inconsistencies in a system by continuous
gossiping. Our anti-entropy protocol progresses through rounds in which
members randomly choose other members, send a summary of their mes-
sage histories to the selected process, and then solicit copies of any
messages they discover themselves to be lacking to converge toward identi-
cal histories. This is illustrated in Figure 3: after a period during which
messages are multicast unreliably (process Q fails to receive a copy of M0,
and process S fails to receive M1, denoted by the dashed arrows), the
anti-entropy protocol executes (gray region). At this time Q discovers that
it has missed M0 and requests a retransmission from P, which forwards it.
S does not detect and repair its own loss until the subsequent anti-entropy
round.

The figure oversimplifies by suggesting that the protocol alternates
between multicasting and running anti-entropy rounds; in practice, the two
modes are concurrent. Also, the figure makes the anti-entropy communica-
tion look regular; in practice, it is quite random. Thus, Q receives an
anti-entropy message from P, but could have obtained it from R or S.
Moreover, as a side effect of randomness, a process may not receive an
anti-entropy message, at all, in a given round of gossip: here, S receives
none, while Q receives two.

M 0                M 1 M2             anti-entropy     M3         M 4 ….                          anti-entropy

P

Q

R

S

M 0

M 1

Fig. 3. Illustration of the pbcast anti-entropy protocol.
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Our protocol differs from most prior gossip protocols in that pbcast
emphasizes achieving a common suffix of message histories rather than a
common prefix. In other words, our protocol prioritizes recovery of recent
messages, and when a message becomes old enough the protocol gives up
entirely and marks the message as lost. The advantage of this structure is
that the protocol avoids scenarios where processes suffer transient failures
and are subsequently unable to catch up with the rest of the system. In
traditional gossip protocols, such a situation can cause the other processes’
message buffers to fill and the overall system to slow down. Our protocol
avoids this behavior by eventually giving up on old messages, and instead
emphasizing delivery of recent messages. However, even though messages
may eventually be marked as “lost,” a probabilistic analysis of the protocol
shows that—when properly configured—this loss is unlikely to happen
except at failed processes, or with messages sent by processes that failed as
they sent them. Section 5 discusses our handling of such cases.

Thus, in our example, if process R had experienced a soft failure and
missed messages M0, M4, it would learn about them in a subsequent
anti-entropy message and would request retransmissions in reverse order:
M4 first, then M3, and so forth. While pulling these messages from other
processes, R would participate normally in new multicasts and new rounds
of the anti-entropy algorithm.

The anti-entropy protocol is run by all processes in the system, and
proceeds through a sequence of rounds. The length of each round must be
larger than the typical round-trip time for an RPC over the communica-
tions links used by the protocol; in practice, we used much longer rounds
which are a substantial fraction of a second in duration (for example, our
experiments start a round every 100ms). Clocks need not be synchronized,
but we will initially act as if they were for simplicity of the exposition. At
the beginning of each round, every member randomly chooses another
member with which it will conduct the anti-entropy protocol and sends it a
digest (summary) of its message histories. The message is called a “gossip
message.” The member that receives this message compares the digest with
the messages in its own buffers. If the digest contains messages that this
member does not have, then it sends a message back to the original sender
to request some messages to be retransmitted. This message is called the
“solicitation” and causes the receiver to retransmit some of the messages.

Processes maintain buffers of messages that have been received from
other members in the group. Every message is either delivered to the
application, or if a message cannot be recovered during the retransmission
protocol, an upcall is used to notify the application of missing messages.
These events occur in FIFO order from each sender. When messages are
received, they are inserted in the appropriate location in a message buffer.

Upon receiving a message, a process tags the message with the round in
which the message was received. Any undelivered messages that are now in
order are delivered. (In some situations, it might make sense to delay
delivery until one or more rounds of gossip have been completed. Doing so
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would clearly reduce the risk that a very small number of processes deliver
the pbcast, but we have not explored the details of such a change.) The
process will continue to gossip about the message until a fixed number of
rounds after its initial reception, after which the message is garbage-
collected. This number of rounds and the number of processes to which a
processes gossips in each round3 are parameters to the protocol. The
product of these parameters, called the fanout, can be tuned using the
theory we develop in Appendix A (summarized in Section 6). If a process
has been unable to recover a missing message for long enough to deduce
that other processes will have garbage-collected it, it gives up on that
message and reports a gap (lost message) to the application layer.

There are several optimizations to the anti-entropy protocol that act to
limit its costs under failure scenarios. Without these additions, a normal
anti-entropy protocol is liable to enter fluctuating communication patterns
whereby poorly performing processes or a noisy network can affect healthy
processes, by swamping them with retransmission requests. Here, we
summarize six important optimizations. In Section 7 we present experi-
mental evidence that they achieve the desired outcome.

Optimization 1: Soft-Failure Detection. Retransmission requests are
only serviced if they are received in the same round for which the original
solicitation was sent. If the response to a solicitation takes longer than a
round (which is normally more than enough time) then the response is
dropped. The failure of a process to respond to a solicitation within a round
is an indication that the process or the network is unhealthy, and hence
that a retransmission is unlikely to succeed. This also protects against
cases where a process responds to many solicitations at once and causes the
network to become flooded with redundant retransmissions.

Optimization 2: Round Retransmission Limit. The maximum amount of
data (in bytes) that a process will retransmit in one round is also limited. If
more data are requested than this, then the process stops sending when it
reaches this limit. This prevents processes that have fallen far behind the
group from trying to catch up all at once. Instead, the retransmission can
be carried out over several rounds with several different processes, spread-
ing the overhead in space and time.

Optimization 3: Cyclic Retransmissions. Processes responding to re-
transmission requests cycle through their undelivered messages, taking
into account the messages that were requested in the previous rounds. If
the request from the previous round was successful, but the messages
might still be in transit, the response will include different messages,
avoiding redundant retransmissions.

3In our experiments with the protocol, we find that the average load associated with the
protocol is minimized if a process gossips to just one other process in each round, but one can
imagine settings for which this would not be the case.
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Optimization 4: Most-Recent-First Retransmission. Messages are re-
transmitted in the order of most recent first. Oldest-first retransmission
requests can induce a behavior in which a temporarily faulty process tries
to catch up and recover from its problem, but is left permanently lagging
behind the rest of the group.

Optimization 5: Independent Numbering of Rounds. It may seem as if
processes should advance synchronously through rounds, but the protocol
actually allows each process to maintain its own round numbers and to run
them asynchronously, which is how our implementation actually works.
The insight is that the number of rounds that have elapsed is used to
determine when to deliver or garbage-collect a message, but this is entirely
a local decision. The round number also enters in a gossip message and any
subsequent solicitation to retransmit, but the solicitation can simply copy
the round number used by the sender of the gossip message.

Optimization 6: Random Graphs for Scalability. If one assumes that
large groups would use IP multicast for the unreliable multicast, the basic
protocol presented above is highly scalable except in two dimensions. First,
as stated, it would appear that each participating process needs a full
membership list for the multicast group, since this information is used in
the anti-entropy stages of the protocol. Such an approach implies a poten-
tially high traffic of membership updates to process group members, and
the list itself could become large. Second, in a wide-area use of the protocol,
anti-entropy will often involve communication over high-latency communi-
cation paths. In a very large network the buffering requirements and
round-length used in the protocol could then grow as a function of worst-
case network latency.

Both problems can be avoided. A WAN is typically structured as a
collection of LANs interconnected (redundantly) by TCP tunnels or gate-
ways. In such an architecture, typical participants would only need to know
about other processes within the same LAN component; only processes
holding TCP endpoints would perform WAN gossip.

Generalizing, we can ask about the behavior of pbcast if each participant
only knows about, and gossips to, a subset of the other participants—
perhaps, in a network of 10,000 processes, each participant might gossip
within a set of 100 others. Research on randomized networks has demon-
strated that randomized protocols operate correctly on randomly generated
graphs with much less than full connectivity [Feige et al. 1990]. Drawing
upon this theory, we can conclude that pbcast should retain its properties
when such a subset scheme is employed. Moreover, the subset to which a
given member gossips can be picked to minimize latency, thereby bounding
the round-trip times and hence round-lengths to a reasonable level. We are
currently developing a membership service for our Spinglass implementa-
tion of pbcast, which will manage membership on behalf of the system,
select these subsets, and inform each pbcast participant of the list of
processes to which it should gossip.
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Extended in this manner, the protocol overcomes the scalability concerns
just identified, leaving us with a protocol having entirely local costs, much
like SRM, RMTP, XTP, or MUSE. A pbcast message can be visualized as a
sort of frontier advancing through the network over a spanning tree. Each
process first learns of the pbcast either during the initial multicast, or in
rounds of gossip that occur over low-latency links between processes and
their neighbors. Irrespective of the size of the network, safety and stability
would rapidly be reached. Moreover, only membership service needs the
full membership of the multicast group. Typical pbcast participants would
know only of the processes to which they gossip, would gossip mostly to
neighbors, and the list of gossip destinations would be updated only when
that set changes, not on each membership change of the overall group.

Optimization 7: Multicast for Some Retransmissions. In certain situa-
tions, our protocol employs multicast to retransmit a message, although we
do this rather carefully to avoid triggering the sort of unscalable growth in
overhead seen in the SRM protocol. At present, our protocol uses multicast
if the same process is solicited twice to retransmit the same message: the
probability of this happening is very low unless a large number of processes
have dropped the message. Additionally, suppose that we define distance in
terms of common IP address prefixes: processes in the same subnet are
“close” to one another, and processes on different subnetworks are “re-
mote.” Then when a process solicits a (point-to-point) retransmission from a
process remote from it, upon receiving that message it immediately remul-
ticasts it using a “regional” setting for the multicast TTL field. The idea is
that since optimization 6 ensures that most gossip will be between pro-
cesses close to one another, it is unlikely that a retransmission would be
needed from a remote source unless the message in question was dropped
within the region of the soliciting process. Accordingly, the best strategy is
to remulticast that message immediately upon receipt, within the receiver’s
region.

5. INTEGRATION WITH ENSEMBLE’S FLOW CONTROL AND STATE
TRANSFER TOOLS

5.1 Flow Control

Our model implicitly requires that the rate of pbcast messages be limited.
Should this rate be exceeded, the network load would threaten the indepen-
dent failure and latency assumptions of the model, and the guarantees of
the protocol would start to degrade. In normal use, some form of applica-
tion-level rate control is needed to limit the rate of multicasts. For example,
the application might simply be designed to produce multicasts at a
constant, predetermined rate, calculated to ensure that the risk of over-
loading the network is acceptably low.

Pbcast can also be combined with a form of flow control tied to the
number of buffered messages active within the protocol itself. In this
approach, when a sender presents a new multicast to the communication
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subsystem, the message would be delayed if the subsystem is currently
buffering more than some threshold level of active multicasts, from the
same or other sources. As pbcast messages age and are garbage-collected,
new multicasts would be admitted. Ensemble, the multicast framework
within which we implemented one of our two versions of pbcast, supports a
flow control mechanism that works in this manner. However, for the
experiments reported here, we employed application-level rate limitations.
We believe that for the class of applications most likely to benefit from a
bimodal reliable multicast, the rate of data generation will be predictable,
and used to parameterize the protocol. In such cases, the addition of an
unpredictable internal flow-control mechanism would reduce the determin-
ism of the protocol, while bringing no real benefits.

5.2 Recovery from Delivery Failures

Recall from Figure 1 that in a conventional form of reliable group commu-
nication, a single lagging process can impact throughput and latencies
throughout the entire group. Our protocol overcomes this phenomenon but
suffers from a complementary problem, which is that if a process lags far
enough behind the other group members, those processes may garbage-
collect their message histories, effectively partitioning the slow process
away from the remainder of the group. The slow process will detect this
condition when normal communication is restored, but has no opportunity
to catch up within the basic protocol. Notice that this problem is experi-
enced by a faulty process, not a healthy one, and hence cannot be addressed
simply by adjusting protocol parameters.

We see two responses to this problem. In Spinglass, we are exploring the
possibility of varying the amount of buffering used by each pbcast partici-
pant. Most processes would have small buffers, but some might have very
large buffers—in the limit, some could spool copies of all messages sent in
the system. These would then serve as repositories of last resort, from
which a recovering process could request the entire sequence of messages
which were lost during a transient outage.

When pbcast is used together with Ensemble, a second option arises.
Ensemble includes tools for process join and leave, membership tracking,
and traditional reliable multicast within a process group. Included with
these is a state transfer feature. The mechanism permits a process joining
a process group to receive state from any process or set of processes already
present in the group. Such a joining process can also offer its own state to
the existing members; hence, the protocol supports state merge, although in
normal usage we prefer to transfer state from a “primary component” of the
partitioned group to a “minority component.” A pbcast participant that falls
behind could thus use the Ensemble state transfer as a recovery mecha-
nism.

6. GRAPHING THE COMPUTATIONAL RESULTS

In Appendix A, we show how pbcast can be analyzed under the assump-
tions of our model. This analysis yields a computational model for the
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protocol, which we used to generate the graphs in Figure 4. These graphs
were produced under the assumption that the initial unreliable multicast
failed (only the original sender initially has a copy), that the probability of
message loss is 5%, and that the probability that a process will experience a
crash failure during a run of the protocol is 0.1%. All of these assumptions
are very conservative; hence, these graphs are quite conservative. Recall
from Section 4 that the fanout measures the number of processes to which
the holder of a multicast will gossip before garbage-collecting the message.

On the upper left is a graph illustrating pbcast’s bimodal delivery
distribution, which motivates the title of this article. As the General of our
little fable recognized, the likelihood that a very small number of processes
will receive a multicast is quite low. The likelihood that almost all receive
the multicast is very high. And the intermediary outcomes are of vanish-
ingly low probability.

To understand this graph, notice that the y-axis is expressed as a
predicate over the state of the system after some amount of time. Intu-
itively, the graph imagines that we run the protocol for a period of time and
then look on the state S achieved by the protocol. Pbcast guarantees that
the probability that S is such that almost none or almost all process have
delivered pbcast is high, and the probability that S is such that about a

Fig. 4. Analytical results (unless otherwise indicated, for 50 processes).
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half of participants have delivered pbcast is extremely low. When one
considers that the y-axis is on a logarithmic scale, it becomes clear that
pbcast is overwhelmingly likely to deliver to almost all processes if the
sender remains healthy and connected to the network.

When the initial unreliable multicast is successful, the situation is quite
different; so much so that we did not produce a graph for this case. Suppose
that 5% of these initial messages are not delivered. The initial state will
now be one in which 47 processes are already infected, and if our protocol
runs for even a single round, it becomes overwhelmingly probable that the
pbcast will reach all 50 processes, limited only by process failures. For this
section the worst-case outcomes are more relevant; hence, it makes sense to
assume that the initial unreliable multicast fails.

The remaining graphs superimpose the behavior of pbcast with respect to
two predicates that define exemplary undesired outcomes; in keeping with
the idea that these show risk of failure, we produced them under the
pessimistic assumption that the initial IP multicast fails. The first predi-
cate is the one our General might have used: it considers a run of the
protocol to be a failure (in his case, a gross understatement!) if the
multicast reaches more than 10% of the processes in the system but less
than 90%. The second predicate is one that arises when pbcast is used in a
system that replicates data in a manner having properties similar to those
of virtual synchrony, using an algorithm we describe elsewhere [Hayden
and Birman 1996]. In this protocol, updates have a two-phase behavior,
which is implemented using pbcast. An undesired outcome arises if pbcast
delivers to roughly half the processes in the system, and crash failures
make it impossible to determine whether or not a majority was reached,
forcing the update to abort (roll-back) and be restarted. The idea of these
three graphs is to employ our model to explore the likelihood that pbcast
could be used successfully in applications with these sorts of definitions of
failure. Both predicates are formalized in the appendix.

The applications of pbcast discussed in the introduction could also be
reduced to failure predicates. For example, in an air traffic application that
uses pbcast to replicate updates to the tracks associated with current
flights, the system would typically operate safely unless several updates in
a row were lost for the same track. By starting with the controller’s ability
to tolerate missing track updates or inconsistency between the data dis-
played on different consoles, one can compute a predicate encoding the
resulting risk threshold as a predicate. At the level of our model, each
pbcast is treated as an independent event; hence, any condition expressed
over a run of multicasts can be reexpressed as a condition on an individual
outcome.

The graph on the upper right in Figure 4 shows how the risk of a “failed”
pbcast drops with the size of the system. The lower graphs look at the
relation between the expected “fanout” from each participant during the
gossip stage of failure and the risk that the run will fail in the sense
defined earlier. The graphs were based on the parameters used in our
experimental work and can be used in setting parameters such as the
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fanout and the number of rounds, so that pbcast will achieve a desired
reliability level, or to explore the likely behavior of pbcast with a particular
parameterization in a setting of interest. Notice also that predicate I yields
a much lower reliability than predicate II. This should not surprise us:
predicate I counts a pbcast as faulty if, for example, 30% of the processes in
the system fail to receive it. Predicate II would treat such an outcome as a
success, since 70% is still a clear majority. Note also that the graph on the
lower right compares the fanout required to obtain 1E-8 reliability using
predicate I with that required to obtain 1E-12 for predicate II. This was to
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Fig. 5. Number of susceptible processes versus number of gossip rounds when the initial
multicast fails (left) and when it reaches 90% of processes (right; note scale). Both runs
assume 1000 processes.
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get the curves onto the same scale; in practice, 1E-8 is probably adequate
for the applications discussed later. If the IP multicast were successful, the
risks of failure in all three graphs would be reduced by several orders of
magnitude.

Since throughput stability lies at the heart of our work, we also set out to
analyze the expected variance in throughput rates using formal methods.
We first considered the expected situation for a single pbcast where the
initial unreliable multicast fails. Our approach was to use the analysis to
obtain a series of predictions showing how the number of processes which
have yet to receive a copy decreases over time (Figure 5), and then to use
this data to compute the expected number of rounds before a selected
correct participant receives a multicast (Figure 6). The resulting curves
peak at roughly the log of the group size and have variance that also grows
with the log of the group size.

Next, we considered the situation when the initial IP multicast or
tree-based multicast is successful. In this case, a typical process receives a
multicast after it has been “relayed” through some number of intermediary
processes, and the length of the relay chain will grow with logb~N!, where
the base b is the average branching factor of the forwarding tree used by
the initial multicast—2 in the case of the tree-based scheme used in our
experimental work, but potentially much larger for IP multicast. Suppose
that this chain is of length c. Each of the relaying processes can be viewed
as an independent “filter” that delays messages by some mean amount with
some associated variance. If we treat this as a normal distribution, the
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Fig. 6. The probability for a correct process to receive a pbcast in a particular round for goups
of various sizes. The distributions are essentially normal, with means centered at log~n!.
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transit through the entire tree will also have a normal distribution, with its
mean equal to the c times the mean forwarding delay, and variance equal
to Îc * s, where s is the variance of the forwarding delay distribution.4

From this information, we can make predictions about the average
throughput and the variance in throughput that might be observed over
various time scales. Consider a period of time during which a series of
pbcast messages are injected into the system, and assume that the mes-
sages are independent of one another (that is, that the rate is sufficiently
low so that there are no interference effects to worry about). Based on the
analysis above, the expected variance in time to receive the sequence will
be Î~2c! * s. Thus we would expect the throughput variance to grow
slowly, as the square root of the log of the system size.

But now we face a problem: the two cases have very different expected
delivery latency and variance. If the initial multicast has erratic average
reliability, throughput will fluctuate between the two modes.

Our experimental data, reported in Section 7, is for a setting in which the
initial tree-based multicast is quite reliable, and we indeed observe very
stable throughput with variance that grows slowly and in line with predic-
tions. But suppose that we were to use pbcast in dedicated Internet
settings or even over the public Internet. In these cases, the unreliable
multicast might actually fail some significant percentage of the time.
Compensating for this is optimization 7, which was not treated in our
theoretical analysis, but in practice would cause processes to remulticast
messages rapidly in such a situation. Experimentally, optimization 7 does
seem to sharpen the delivery distribution dramatically.5

Under the assumption that the delivery distribution will be reasonably
tight, but still have two modes, one option would be to introduce a buffering
delay to “hide” the resulting variations in throughput, using the experimen-
tal and analytic results to predict the amount of buffering needed. For
example, suppose that we assume clock synchronization and that we delay
each multicast, delivering it k times the typical round-length after the time
at which it was sent. Here, k could be derived from Figure 6 so that 99% of
all messages will have been received in this amount of time—14 to 16
gossip rounds in the case of N 5 128, for example—about 1.5 seconds if
rounds last for 100ms. At the cost of buffering the delayed messages for
this amount of time, we could now smooth almost all variance in through-
put rate. Such a method lies at the core of the well-known (D-T atomic
multicast [Cristian et al. 1985]. A version of pbcast that incorporates such a

4This is because the distributions are identical normal ones with variance s, and variance for
a summed distribution grows as the square root of the sum of squares.
5One way to visualize this is to think of the networks as the surface of a soccer ball, having
regions with high connectivity (surface patches) connected by tunnels (borders between the
patches). Pbcast operates like a firework, bursting throught he network to infect each region,
then bursting again regionally to infect most processes in each patch, and finally fading away
with a few last sparks as the remaining processes are infected by unicast gossip.
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delay (although for a different reason) is discussed in Hayden and Birman
[1996] and Birman [1997].

But worst-case delay may exaggerate the actual need for buffering. Our
experimental work, which reflects the impact of optimization 7, suggests
that even a very small amount of buffering could have a dramatic impact.
This is in contrast to the situation in Cristian et al. [1985], where a
deterministic worst-case analysis leads to the somewhat pessimistic conclu-
sion that very substantial amounts of buffering may be needed, and very
long delays before delivery. In our setting, the goals are probabilistic, and
the analysis can focus on the expected situation, not the worst case.

To summarize, formal analysis gives us powerful tools and significant
predictive options. The tools permit pbcast to be parameterized for a
particular setting, and they show us how to bridge the gap between the
pbcast primitive itself and the application-level reliability objectives. The
predictions concern the distribution of expected outcomes for the protocol
and the degree to which throughput will have the stability properties we
seek. In this second respect, we find that pbcast, used in settings where the
initial unreliable multicast is likely to be successful (reaching most desti-
nations most of the time), would indeed exhibit stable and steady through-
put in a scalable manner. Confirming this, our experiments with Spinglass,
reported in the next section, show that even with very small buffers and
without any artificial delay at all, the received data rate remains steady
when we alternate between a mode in which most multicast are successful,
and one in which multicasts reach very few destinations.

7. PERFORMANCE AND SCALABILITY OF AN IMPLEMENTATION

In this section, we present experimental results concerning the perfor-
mance, throughput stability, and scalability of pbcast using runs of the
actual protocol. We include several types of experimental work. We start
with a study of the Ensemble virtual synchrony protocols, which we run
side by side with the Ensemble implementation of pbcast. The Ensemble
protocols we selected perform extremely well and have been heavily tuned;
hence, we believe it fair to characterize them as “typical” of protocols in this
class. Obviously, however, one must use care in extrapolating these results
to other implementations of virtually synchronous multicast. The experi-
ments reported here were conducted using an SP2 parallel computer, which
we treated as a network of workstations. The idea was to start by isolating
our software (the real software, which can run without changes on a normal
Internet LAN or WAN) on a very clean network and then to inject noise.

Next, we compare pbcast with SRM, using the NS-2 simulator [Feige et
al. 1990], and the two SRM implementations available for that environ-
ment. We used NS-2 to construct a simulation of pbcast, and then examined
pbcast and SRM side by side under various network topologies and condi-
tions, using the SRM parameter settings recommended by the designers of
that protocol. The simulation allowed us to scale both protocols into very
large networks.
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Finally, we looked at the Spinglass implementation of pbcast on a
network of workstations running over a 10Mbit ethernet in a setting where
hardware multicast is available. This last study was less ambitious, be-
cause the number of machines available to us was small, but still provides
evidence that what we see in simulation and on the SP2 actually does
predict behavior of the protocol in more realistic networks.

Accordingly, we start by looking at pbcast next to virtual synchrony on
network configurations of various sizes, running on the SP2. We emulate
network load by randomly dropping or delaying packets, and emulate
ill-behaved applications and overloaded computers by forcing participating
processes to sleep with varied probabilities. With this approach we studied
the behavior of groups containing as many as 128 processes.

Figure 7 shows the interarrival message spacing for a traditional virtual
synchrony protocol, running in Ensemble,6 side by side with the Ensemble
implementation of pbcast. These were produced in groups of eight processes
in which one process was perturbed by forcing it to sleep during 100ms
intervals with the probability shown. The data rate was 75 7KB multicasts
per second: relatively light for the Ensemble protocol (which can reach
some 300 multicasts per second in this configuration), and well below the
limit for pbcast (about 250 per second). Both graphs were produced on the
SP2.

The interarrival times for the traditional Ensemble protocols spread with
even modest perturbation, reflecting bursty delivery. Pbcast maintains
steady throughput even at high perturbation rates.

The first figure in this article, Figure 1, illustrated the same problem at
various scales. In the experiment used to produce that figure, we measured
the throughput in traditional Ensemble virtual synchrony groups of various
sizes as we perturbed a single member. We see clearly, that, although
Ensemble can sustain very high rates of throughput (200 7KB messages
per second is close to the limit for the SP2 used in this manner, since the
machine lacks hardware multicast), as the group becomes larger it also
becomes more and more sensitive to perturbation. In Figure 8, we exam-
ined the same phenomenon in more detail for a small group of eight
processes. Interestingly, even the perturbed process receives a higher rate
of messages with pbcast.

Figures 1, 7, and 8 are not intended as an attack upon virtual synchrony,
since the model has typically been used in smaller groups of computers,
and with applications that generate data in a more bursty manner, rarely
maintaining sustained, high data rates [Birman 1999]. Under these less
extreme conditions, the protocols work well and are very stable. The
problems cited here arise from a combination of factors: large scale, high

6Although Ensemble supports a scalable protocol stack, for our experiments that stack was
found to behave identically to the normal virtual synchrony stack. Accordingly, the data
reproduced here are for a normal Ensemble stack, providing FIFO ordering and virtual
synchrony.
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and sustained data rates, and a type of perturbation designed to disrupt
throughput without triggering the failure detector.

Figure 9 was derived from the same experiment using pbcast; now,
because throughput was so steady, we included error bars. These show,
that, as we scale a process group, throughput can be maintained even if we
perturb members, but the variance (computed over 500ms intervals) grows.
On the bottom right is a graph of pbcast throughput variance as a function
of group size. Although the scale of our experiments was inadequate to test
the log-growth predictions of Section 6, the data at least seem consistent
with those predictions.

Histogram of throughput for Ensemble’s FIFO virtual synchrony protocol
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Histogram of throughput for Pbcast
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Fig. 7. Histograms of the interarrival spacing of multicasts in an 8-process group when using
a traditional virtual synchrony protocol (left) and pbcast (right), at 75 8KB messages per
second. The tighter distribution of pbcast supports our throughput stability cliams.
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In Figure 10 we looked at the consequences of injecting noise into the
system. Here, systemwide packet loss rates were emulated by causing the
SP2 to randomly drop the designated percentage of messages. As the
packet loss rate grows to exceed 10% of all packets, pbcast becomes lossy at
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Fig. 8. Ensemble (“traditional”) and pbcast, side by side, in an experiment similar to the one
used to produce Figure 1. For a group of eight processes, we perturbed one and looked at the
delivery rate at a healthy group member and at the perturbed process, at 100 messages per
second and 150 per second. With the virtual synchrony protocol, data rates to the healthy and
perturbed process are identical. With pbcast, the perturbed process starts to drop messages
(signified by a lower data rate than the injection rate), but the healthy processes are not
affected.
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the highest message rate we tested (200 per second); the protocol remains
reliable even at a 20% packet loss rate when we run it at only 100 messages
per second. Increasing the fanout did not help at the high packet injection
rate, apparently because we are close to the bandwidth limits of the SP2
interconnect.

Figure 10 thus illustrates the dark side of our protocol. As we see here,
with a mixture of high data bandwidths and high loss rates, pbcast is quite
capable of reporting gaps to healthy processes. This can be understood as a
“feature” of the protocol; presumably, if we computed the bimodal curve for
this case, it would be considerably less “sharp” than Figure 4 suggests. In
general, if the gossip fanout is held fixed, the expected reliability of pbcast
drops as the network data loss rate rises or if the network becomes
saturated. In the same situation, a virtual synchrony protocol would refuse
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Fig. 9. Pbcast througput is extremely stable under the same conditions that provoke
degrated throughput for traditional Ensemble protocols, but variance does grow as a function
of group size. For these experiments 25% of group members were perturbed, and throughput
was instrumented 100 messages at a time. Behavior remains the same as the perturbation
rate is increased to 1.0, but for clarity of the graphs, we show only the interval [0,5]. Although
our experiments have not scaled up sufficiently to permit very general conclusions to be
drawn, the variance in throughput is clearly small compared to the throughput rate and is
growing slowly.

Bimodal Multicast • 67

ACM Transactions on Computer Systems, Vol. 17, No. 2, May 1999.



to accept new multicasts. With this one exception, our experiments pro-
voked no data loss at all for healthy pbcast receivers.

Figure 11 shows the background overhead associated with these sorts of
tests. Here we see that as the perturbation rate rises, the overhead also
rises: for example, in a 16-member group with 25% of processes perturbed
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Fig. 10. Impact of packet loss on pbcast reliability. At high data rates (200 messages per
second) noise triggers packet loss in large groups; at lower rates even significant noise can be
tolerated.
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25% of the time, 8% of messages must be retransmitted by a typical
participant; this rises to 22% in a 128-member group. Although our
analysis shows that overhead is bounded, it would seem that the tests
undertaken here did not push to the limits until the perturbation rate was
very high.

Next, we turned to a simulation, performed using NS-2. In the interest of
brevity, we include just a small amount of the data we obtained through
simulation; elsewhere, we discuss our simulation findings in much more
detail [Ozkasap et al. 1999]. Figure 12 shows data collected using a
network structured as a four-level balanced tree, within which we studied
link utilization for pbcast with and without optimization 7 (we treated this
separately because our theoretical results did not consider this optimiza-
tion) and for the two versions of SRM available to us—the adaptive and
nonadaptive protocol, with parameters configured as recommended by the
developers. The two graphs show utilization for a link out of and into a
sender. The group size is the same as the network size, and there is a single
sender generating 100 210-byte messages per second.

What we see here is that as the group grows larger (experiencing a large
number of dropped packets, since all links are lossy), both protocols place
growing load on the network links. Much of the pbcast traffic consists of
unicasts (gossip and retransmissions), while the SRM costs are all associ-
ated with multicast and rise faster than those for pbcast.

Figure 13 looks specifically at overheads associated with the two proto-
cols, measuring the rate of retransmission requests and copies of messages
received by a typical participant when 100 messages per second are
transmitted in a network with 0.1% packet loss on each link. The findings
are similar: SRM overheads grow much more rapidly than pbcast over-
heads as we scale the system up, at least for this data loss pattern. Readers
interested in more detail are referred to Ozkasap et al. [1999].

Finally, we include some preliminary data from the Spinglass implemen-
tation of pbcast, which runs on local-area networks. These graphs, shown
in Figure 14, explore the impact of optimizations 2 and 7. Recall that
optimization 2 introduced a limit on the amount of data pbcast will
retransmit in any single round, while optimization 7 involves the selective
use of multicast when retransmitting data. To create these graphs, we
configured a group of 35 processes with a single sender, transmitting 100
1KB messages per second on a 10Mbit LAN. For the top two graphs, every
20 seconds, we triggered a burst of packet loss by arranging that 30% of the
processes will simultaneously discard 50 consecutive messages; we then
graphed the impact on throughput at a healthy process. Recall that our
throughput analysis has trouble with such cases, because they impact the
overall throughput curve of the protocol by increasing the expected mean
latency.

What we see here is that without optimization 2 (top left), the perturba-
tion causes a big fluctuation in throughput. But with the optimization, in
this case limiting each process to retransmit a maximum of 10KB per
100ms gossip round, throughput is fairly steady even when packet loss
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occurs. Obviously, this optimization reflects a trade-off, since a perturbed
process will have more trouble catching up, but the benefit for system
throughput stability is much more stable.

The lower graphs examine the case where an outage causes the initial
multicast to fail, along the lines of the conservative analysis presented in
Section 6 of this article. The emulation operates by intercepting 10 consec-
utive multicasts and, in each case, allowing the message to reach just a
single randomly selected destination (hence, two processes are initially
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infected; we comment, however, that the graphs look almost identical if the
initial multicast is entirely discarded, so that it initially infects only the
sender). Here, even with optimization 2, throughput is dramatically im-
pacted each time the outage occurs. With optimization 7, however, Spin-
glass remulticasts the affected messages, and throughput is again very
smooth. We used a 256KB pbcast buffer for these tests, but in fact quite a
bit less memory was actively used. Since this smooth delivery was obtained
even without delaying received messages (except to put them in FIFO
order), the data supports our contention that at most a very brief delay is
needed to ensure an extremely smooth delivery rate when optimization 7 is
in use.

The steadiness evident in these Spinglass performance graphs is in part
due to the data collection period we used. These graphs show average
throughput during one-second intervals. Throughput would be less steady
for shorter intervals, and more so for larger ones. An application designer,
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knowing the degree to which the application is sensitive to throughput
variations, would translate this to a throughput stability goal. Using the
theory and experimental data, one can then tune7 pbcast to match the
desired behavior.

8. PROGRAMMING WITH PROBABILISTIC COMMUNICATION TOOLS

Although a probabilistic protocol can be used like other types of reliable
group communication and multicast tools, the weaker nature of the guar-
antees provided has important application-level implications. For example,
Ensemble’s virtually synchronous multicast protocols guarantee that all
nonfaulty members of a process group will receive any multicast sent to
that group, even if this requires delaying the entire group while waiting for
a balky process to catch up. In contrast, probabilistic protocols could violate
traditional atomicity guarantees. The likelihood of such an event is known
to be low if the network is behaving itself and if the soft-failure limits are

7The relevant parameter is the length of the gossip round. With shorter lengths the overhead
rises, but the protocol more rapidly discovers and retransmits lost packets.
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appropriate ones, but a transient problem could certainly trigger these
sorts of problems.

These considerations mean that if data are replicated using our protocol,
the application should be one that is insensitive to small inconsistencies,
such as the following:

—Applications that send media, such as radio, television, or teleconferenc-
ing data over the internet. The quality predictions provided by pbcast can
be used to tune the application for a minimal rate of dropouts. When
using conventional multicast mechanisms, such applications must be
tuned under very pessimistic assumptions.

—In a stock market or equity-trading environment [Piantoni and Stancescu
1997], actively traded securities are quoted repeatedly. The infrequent
loss of a quote would not normally pose a problem as long as the events
are rare enough and randomly distributed over messages generated
within the system—a property pbcast can guarantee.

—In an air traffic control setting (such as in PHIDIAS), many forms of data
(such as the periodic updates to radar images and flight tracks8) age
rapidly and are repeatedly refreshed. Dropping updates of these sorts
infrequently would not create a safety threat. It is appealing to use a
scalable reliable protocol in this setting, yet one needs to demonstrate to
the customer that doing so does not compromise safety. The ability to
selectively send the more time-critical but less safety-critical information
down a probabilistic protocol stack that guarantees stable throughput
and latency would be very desirable.
In this setting, there are also problems for which stronger guarantees of
a virtually synchronous nature are needed. For example, the PHIDIAS
system replicates flight plan updates within small clusters of 3–5 work-
stations, using state machine replication. Each event relevant to the
shared state is reliably multicast to the cluster participants, which
superimpose a terse representation of the flight plan on a background of
radar image and track data. The rate of updates to the foreground
data—the flight tracks—may be as low as one or two events per second. A
virtually synchronous multicast is far more appropriate for this second
class of uses [Birman 1999].

—In a health care setting, many forms of patient telemetry are refreshed
frequently on displays close to the bed, at the nursing station, in the
physician’s office, etc. Data of this sort can be transmitted using pbcast.
On the one hand, the underlying signal frequently contains noise, so
infrequent data loss is intrinsically tolerable; on the other, the hospital
seeks to make it likely that alarms will be triggered promptly, and that
health care workers will use fresh data when making decisions. In

8A flight track plots the observed position and trajectory of a flight, as measured by radar and
telemetry. The flight plan is a record of the pilot’s intentions and the instructions given by the
controller.
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contrast, a medication change order would probably be replicated using a
protocol with end-to-end guarantees. The doctor’s computer (at one end of
the dosage-changing operation) needs the guarantee that the systems
displaying medication orders (at the other end) will reflect the changed
dosage. Otherwise the doctor should be warned.

Each of these examples is best viewed as a superposition of two (or more)
uses of process groups. Notice, however, that the different uses are inde-
pendent—virtual synchrony is not used to overcome the limitations of
pbcast. Rather, a pbcast-based application (such as the one used to update
the radar images on the background of a controller’s screen) coexists with a
virtually synchronous one (the application used to keep track of flight plans
and instructions which the controller has issued to each flight). The
application decomposes cleanly into two applications, one of which is solved
with pbcast, and the other with the traditional form of reliable multicast.

Traditional forms of reliable multicast can and should be used where
individual data items have critical significance for the correctness of the
application. Examples include security keys employed for access to a stock
exchange system, flight plan data replicated at the databases associated
with multiple air traffic control centers, or the medication dosage instruc-
tions from the health care example. But as just seen, other kinds of data
may be well matched to the pbcast properties. Interestingly, in the above
examples, frequent message traffic would often have the properties needed
for pbcast to be used safely, while infrequent traffic would be typical for
objects such as medical records, which are updated rarely, by hand. Thus
pbcast would relieve the more reliable protocols of the sort of load that they
have problems sustaining in a steady manner. These examples are repre-
sentative of a class of systems with mixed reliability requirements.

A second way to program with pbcast is to develop algorithms that make
explicit use of the probabilistic reliability distribution of the protocol, as
was done in the data replication algorithm mentioned in Section 6 [Hayden
and Birman 1996]. One can imagine algorithms that use pbcast to replicate
data with probabilistic reliability, and then employ decision-theoretic
methods to overcome this uncertainty when basing decisions on the repli-
cated data. For example, suppose that pbcast was used to replicate all
forms of air traffic control data—an idea which might be worth pursuing,
since the protocols are lightweight, easy to analyze, and very predictable.
The quality of each flight plan will now be probabilistic. Under what
conditions is it safe to make a safety-critical decision, and under what
conditions should we gossip longer (to sharpen the quality of the decision)?
In the future, we hope to explore these issues more fully.

9. COMPARISON WITH PRIOR WORK

As noted earlier, our protocol builds upon a considerable body of prior work.
Among this, the strongest connections are to the epidemic algorithms
studied by Demers et. al. in the Xerox work on data replication. However,
the Xerox work looked at systems under light load, and did not develop the
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idea of probabilistic reliability as a property one might present to the
application developer. Our work extends the Xerox work by considering
runs of the protocol, and by using IP-multicast. In addition to the work
reported here, our group at Cornell also explored other uses of gossip, such
as gossip-based membership tracking [van Renesse et al. 1996] and gossip-
based stability detection [Guo 1998].

Our protocol can also be seen as a “soft” real-time protocol, with connec-
tions to such work as the D-T protocol developed by Cristian et al. [1985],
and Baldoni et al.’s d-causal protocol [Baldoni et al. 1996a; 1996b]. None of
this prior work investigated the issue of steady load and steady data
delivery during failures, nor does the prior work scale particularly well. For
example, the D-T protocol involves delaying messages for a period of time
proportional to the worst-case delay in the system and to estimates of the
numbers of messages that might be lost and processes that might crash in a
worst-case failure pattern. In the environments of interest to us, these
delays would be enormous and would rise without limit as a function of
system size. Similar concerns could be expressed with regard to the
(d-causal protocol, which guarantees causal order for delivered messages
while discarding any that are excessively delayed. It may be possible to
extend these protocols into ones with steady throughput and good scalabil-
ity, but additional work would be needed.

10. CONCLUSION

Although many reliable multicast protocols have been developed, reliability
can be defined in more than one way, and the corresponding tools match
different classes of applications. Reliable protocols that guarantee delivery
can be expensive, and may lack stable throughput needed in soft real time
applications, where data are produced very regularly and where delivery
must keep up. Best-effort delivery is inexpensive and scalable, but lacks
end-to-end guarantees that may be important when developing mission-
critical applications. We see these two observations as representing the
core of a debate about the virtues of reliable multicast primitives in
building distributed systems.

In this article, we introduced a new region in the spectrum, one that can
be understood as falling between the two previous endpoints. Specifically,
we showed that a multicast protocol with bimodal delivery guarantees can
be built in many realistic network environments—although not all of them,
at least for the present—and that the protocol is also scalable and gives
stable throughput. We believe that this new design point responds to
important requirements not adequately addressed by any previous option
in the reliable multicast protocol space.

Epilogue

As the military guard led him away in shackles, the Baron suddenly turned.
“General,” he snarled, “When the Emperor learns of your recklessness, you’ll
join me in his dungeons. It is impossible to reliably coordinate an attack
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under these conditions.” “Not so,” replied the General. “The bimodal guar-
antee was entirely sufficient.”

APPENDIX

A. FORMAL ANALYSIS OF THE PROTOCOL

In this appendix, we provide an analysis of the pbcast protocol. The
analysis is true to the protocol implementation, except with respect to three
simplifications. Note that the experimental results suggest that the actual
protocol behaves according to predictions even in environments which
deviate from our assumptions: in effect, the model is surprisingly robust.

The first of these concerns the initial unreliable multicast. When the
process that initiates a pbcast does not crash, remains connected to the
network, while the initial multicast is successful, then the protocol provides
very strong delivery guarantees because the state of the system after the
multicast involves widespread knowledge of the message. If this initial
multicast fails, however, one could be faced with a pbcast run in which
there is just a single process with a copy of the message at the outset.
Below, we focus on this conservative assumption: only the initiator initially
has a copy of the message. However, we point out the step at which a more
realistic assumption could have been made.

A second simplification relates to the model. In the protocol as developed
above, each process receives a message and then gossips about that
message in subsequent rounds of the protocol. But recall that these rounds
are asynchronous and that message loss is independent for each message
send event. Accordingly, our protocol is equivalent to one in which a
process gossips to all at once to randomly selected processes in the first
round after it hears of a message and then ceases to gossip about that
message (such a solution might not be as scalable because load would be
more bursty, but this does not enter into the analysis that follows). This
transformation simplifies the analysis, and we employ it below.

Finally, the analysis omits solicitations and retransmissions, collapsing
these into the single “gossip” message. As will become clear shortly, this
simplification is justifiable for the purposes of our analysis, although there
are certainly questions one could ask about pbcast for which it would not be
appropriate.

In what follows, R is the number of rounds during which the protocol
runs; P is the set of processes in the system; and b*?P? is the expected
fanout for gossip. The first round (like all others) is gossip based. Using
this notation, the abstract protocol that we analyze is illustrated in Figure
15. We give pseudocode in Appendix B; there, the additional parameter G is
used to denote the number of rounds after which a participant should
garbage-collect a message.

Before undertaking the analysis, we should also comment briefly as to
the nature of the guarantees provided by the protocol. With a traditional
reliable multicast protocol, any run has an all-or-nothing outcome: either
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all correct destinations receive a copy of a multicast, or none do so. This
section will demonstrate that pbcast has a bimodal delivery distribution:
with very high probability, all, or almost all, correct destinations receive a
copy. With rather low probability, a small number of processes (some or all
of which may be faulty) receive a copy. And the probability of intermediate
outcomes—for example, in which half the processes receive a copy—is so
small as to be negligible.9

A.1 System Model

The system model in which we analyze pbcast is a static set of processes
communicating synchronously over a fully connected, point-to-point net-
work. The processes have unique, totally ordered identifiers and can toss
weighted, independent random coins. Runs of the system proceed in a
sequence of rounds in which messages sent in the current round are
delivered in the next. There are two types of failures, both probabilistic in
nature. The first are process failures. There is an independent, per-process
probability of at most « that a message between nonfaulty processes is lost
in the network. Message failure events and process failure events are
mutually independent. There are no malicious faults, spurious messages, or
corruption of messages. We expect that both « and t are small probabilities.
(For example, the values used to compute Figure 4 are « 5 0.05 and t 5
0.001).

9Notice, however, that when using the protocol, these extremely unlikely outcomes must still
be recognized as possibilities. The examples cited in the body of the article share the property
that for application-specific reasons, such outcomes could be tolerated if they are sufficiently
unlikely. An application that requires stronger guarantees would need to use a reliable
multicast protocol such as Ensemble’s virtually synchronous multicast, tuning it carefully to
ensure steady throughput.

(* Auxiliary function. *)
to deliver_and_gossip(msg,round):
   (* Do nothing if already received  it. *)
   if received_already then return

   (* Mark the message as being seen and deliver. *)
   received_already := true
   deliver(msg)

   (* If last round, don’t gossip. *)
   if round = 0 then return

   let S be a randomly selected subset of P, |S|=|P|*β

   foreach p in S:
      sendto p Gossip(msg,round-1)

(* State kept per pbcast:  *)
(* have I  received a message *)
(* regarding this pbcast yet? *)
let received_already = false

(* Initiate a pbcast. *)
to pbcast(msg):
   deliver_and_gossip(msg,R)

(* Handle message receipt. *)
on receive Gossip(msg,round):
   deliver_and_gossip(msg,round)

Fig. 15. Abstract version of pbcast used for the analysis. The abstract version considers just
a single multicast message and differs from the protocol as described earlier in ways that
simplify the discussion without changing the analytic results. Pseudocode for the true protocol
appears in Apendix B.
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The impact of the failure model above can be described in terms of an
adversary attempting to cause a protocol to fail by manipulating the system
within the bounds of the model. Such an adversary has these capabilities
and restrictions:

—An adversary cannot use knowledge of future probabilistic outcomes,
interfere with random coin tosses made by processes, cause correlated
(nonindependent) failures to occur, or do anything not enumerated below.

—The adversary has complete knowledge of the history of the current run.

—At the beginning of a run of the protocol, it has the ability to individually
set process failure rates, within the bounds @0..t#

—For messages, it has the ability to individually set message failure
probabilities within the bounds of @0..«# and can arbitrarily select the
“point” at which messages are lost.

Note, that, although probabilities may be manipulated by the adversary,
it may only make the system “more reliable” than the bounds, « and t.

Over this system model, we layer protocols with strong probabilistic
convergence properties. The probabilistic analysis of these properties is,
necessarily, only valid in runs of the protocol in which the system obeys the
model. The independence properties of the system model are quite strong
and are not likely to be continuously realizable in the actual system. For
example, partition failures are correlated communication failures and do
not occur in this model. Partitions can be “simulated” by the independent
failures of several processes, but are of vanishingly low probability. Simi-
larly, the model gives little insight into how a system might behave during
and after a brief networkwide communication outage. Both types of failures
are realistic threats, which is why we resorted to experiments to explore
their impact on the protocol.

A.2 Pbcast Protocol

The version of the protocol used in our analysis is simplified, as follows. We
will assume that a run of the pbcast protocol consists of a fixed number of
rounds, after which a multicast vanishes from the system because the
corresponding message is garbage-collected. A process initiates a pbcast by
unreliably multicasting the message, and it is received by a random subset
of the processes. These gossip about the message, causing it to reach
processes that did not previously have a copy, which gossip about it in turn.
For our analysis, we consider just a single multicast event, and we adopt
the view that a process gossips about a multicast message only during the
round in which it first receives a copy of that message. Processes choose the
destinations for their gossip by tossing a weighted random coin for each
other process to determine whether to send a gossip message to that
process. Thus, the parameters of the protocol studied in the analysis are

—P: the set of processes in the system. N 5 ?P?.
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—R: the number of rounds of gossip to run.

—b: the probability tht a process gossips to each other process (the
weighting of the coin mentioned above). We define the fanout of the
protocol to be b*N: this is the expected number of processes to which a
participant gossips.

Described in this manner, the behavior of the gossip protocol mirrors a
class of disease epidemics which nearly always infect either almost all of a
population or almost none of it. The pbcast bimodal delivery distribution,
mentioned earlier, will stem from the “epidemic” behavior of the gossip
protocol. The normal case for the protocol is one in which gossip floods the
network in a random but exponential fashion.

A.3 Pbcast Analysis

Our analysis will show how to calculate the bimodal pbcast delivery
distribution for a given setting, and how to bound the probability of a
pbcast “failure” using a definition of failure provided by the application
designer in the form of a predicate on the final system state. It would be
preferable to present a closed-form solution; however, doing so for non-
trivial epidemics of the kind seen here is an open problem in epidemic
theory. In the absence of closed-form bounds, the approach of this analysis
will be to derive a recurrence relation between successive rounds of the
protocol, which will then be used to calculate an upper bound on the chance
of a failed pbcast run.

A.4 Notation and Probability Background

The following analysis uses standard probability theory. We use three
types of random variables. Lowercase variables, such as f, r and s, are
integral random variables; uppercase variables, such as X, are binary
random variables (they take values from $0,1%); and uppercase bold vari-
ables, such as X, are integral random variables corresponding to sums of
binary variables of the same letter: X 5 SXi.

P$v 5 k% refers to the probability of the random variable v having the
value k. For binary variables, P$X% 5 P$X 5 1%. With lowercase integral
random variables, in P$r% the variable serves both to specify a random
variable and as a binding occurrence for a variable of the same name.

The distributions of sums of independent, identically distributed binary
variables are called binomial distributions. If @0 # i , n : P$Xi% 5 p,
then

P$X 5 k% 5 S n
k D~p!k~1 2 p!n2k.

We use relations among random variables to derive bounds on the
distributions of the weighted and unweighted sums of the variables. Let Xi,
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Yi, and Zi form finite sets of random variables, and let g~i! be a nonnega-
tive real-valued function defined over integers. If

@0 # i , n : P$Xi% # P$Yi% # P$Zi%

then

P$Y 5 k% # P$Z $ k% 2 P$X $ k 1 1% (1)

O
0#i,n

P$X 5 i%g$i% # O
0#i,n

P$Y 5 i%max
0#j#i

g~j! (2)

These equations will be applied later in the analysis.

A.5 A Recurrence Relation

The first step is to derive a recurrence relation that bounds the probability
of protocol state transitions between successive rounds. We describe the
state of a round using three integral random variables: st is the number of
processes that may gossip in round t (or in epidemic terminology the
infectious processes); rt is the number of processes in round t that have not
received a gossip message yet (the susceptible processes); and ft is the
number of infectious processes in the current round which are faulty.

Recall from the outset of this chapter that our analysis is pessimistic,
assuming that the initial unreliable broadcast fails and reaches none of the
destinations, leaving an initial state in which a single process has a copy of
the message while all others are susceptible:

s0 5 1, r0 5 N 2 1, f0 5 0

rt11 1 st11 5 rt

O
0#t#R

st 1 rR 5 N

The recurrence relation we derive, R~st, rt, ft, st11!, is a bound on the
conditional probability, given the current state described by ~st, rt, ft!,
that st11 of the rt susceptible processes receive a gossip message from this
round. Expressed as a conditional probability, this is P$st11 st, rt, ft%.

For each of the rt processes, we introduce a binary random variable, Xi,
corresponding to whether a particular susceptible process receives gossip
this round. st11 is equal to the sum of these variables, SXi or equivalently
X. In order to calculate R~st, rt, ft, st11!, we will derive bounds on the
distribution of X. Our derivation will be in four steps. First we consider
P$Xi% in the absence of faulty processes and with fixed message failures.
Then we introduce, separately, generalized message failures and faulty
processes, and finally we combine both failures. Then we derive bounds on
P$X 5 k% for the most general case.
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A.5.1 Fixed Message Failures. The analysis begins by assuming (1) that
there are no faulty processes and (2) that message delay failures occur with
exactly « probability, no more and no less. This assumption limits the
system from behaving with a more reliable message failure rate. In the
absence of these sort of failures, the behavior of the system is the same as a
well-known (in epidemic theory) epidemic model, called the chain-binomial
epidemic. The literature on epidemics provides a simple method for calcu-
lating the behavior of these epidemics when there are an unlimited number
of rounds and no notion of failures [Bailey 1975]. We introduce constants
p 5 b~1 2 «! and q 5 1 2 p. p is the probability that both an infectious
process gossips to a particular susceptible process and that the message
does not experience a send omission failure under the assumption of fixed
message failures. (Note that this use of p is unrelated to the reliability
parameter p employed elsewhere in the article; the distinction is clear from
context.)

For each of the rt susceptible processes and corresponding variable, Xi,
we consider the probability that at least one of the st infectious processes
sends a gossip message which gets through. Expressed differently, this is
the probability that not all infectious processes fail to send a message to a
particular susceptible process:

P$Xi% 5 1 2 ~1 2 p!st 5 1 2 qst

A.5.2 Generalized Message Failures. A potential risk in the analysis of
pbcast is to assume, as may be done for many other protocols, that the
worst case occurs when message loss is maximized. Pbcast’s failure mode
occurs when there is a partial delivery of a pbcast. A pessimistic analysis
must consider the case where local increases in the message delivery
probability decrease the reliability of the overall pbcast protocol. We extend
the previous analysis to get bounds on P$Xi%, but where the message failure
rate may be anywhere in the range of @0..«#

Consider every process i that gossips, and consider every process j that i
sends a gossip message to. With generalized message failures, there is a
probability « ij that the message experiences a send omission failure, such
that 0 # « ij # «. This gives bounds @plo..phi# on pij the probability that
process i both gossips to process j and the probability that the message is
delivered: b~1 2 «! 5 plo # b~1 2 « ij! 5 pij # phi 5 b (we also have qlo

5 1 2 plo and qhi 5 1 2 phi).
This in turn gives bounds on the probability of each of the rt processes

being gossiped to, expressed using the variables Xhi and Xlo which corre-
spond to a fixed message failure rate model:

1 2 qlo
st 5 P$Xlo% # P$Xj% # P$Xhi% 5 1 2 qhi

st

A.5.3 Process Failures. Introducing process failures into the analysis is
done in a similar fashion to that of generalized message failures. For
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simplicity in the following discussion, we again fix the probability of
message failure to «.

We assume that ft of the st infectious processes that are gossiping in the
current round are faulty. For the purposes of analyzing pbcast, there are
three ways in which processes can fail. They can crash before, during, or
after the gossip stage of the pbcast protocol. Regardless of which case
applies, a process always sends a subset of the messages it would have sent
had it not been faulty: a faulty process never introduces spurious messages.
If all ft processes crash before sending their gossip messages, then the
probability of one of the susceptible processes receiving gossip message,
P$Xi%, will be as though there were exactly st 2 ft correct processes
gossiping in the current round. If all crash after gossiping then the
probability will be as though all st processes gossiped, while none of the ft

processes had failed. All other cases cause the random variables, Xi, to
behave with some probability in between:

1 2 qst2ft 5 P$Xlo% # P$Xi% # P$Xhi% 5 1 2 qst

A.5.4 Combined Failures. The bounds from the two previous sections
are “combined” to arrive at

1 2 qlo
st2ft 5 P$Xlo% # P$Xi% # P$Xhi% 5 1 2 qhi

st

Then we apply Eq. (1) to get bounds on P$SXj 5 k%, or P$X 5 k%:

P$X 5 k% # P$Xhi $ k% 2 P$Xlo $ k 1 1%

Expanding terms, we get the full recurrence relation:

P$st11 st, rt, ft% # O
st11#i#N

S rt

i D~1 2 qhi
st !i~qhi

st !rt2i

2 O
st11#i#N

S rt

i D~1 2 qlo
st2ft!i~qlo

st2ft!rt2i (3)

We define the right hand side of relation (3) to be R~st, rt, ft, st11!, “an
upper bound on the probability that with st gossiping processes of which ft

are faulty, and with rt processes that have not yet received the gossip, that
st11 processes will receive the gossip this round.”

A.6 Predicting Latency to Delivery

Still working within the same model10 we can compute the distribution of
latency between when a message is sent and when it is delivered. For the

10Actually, we differ in one respect: the analysis of this subsection explicitly treats gossip to b
processes during each round. The previous analysis treated all gossip as occuring in the first
round.
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case where the initial multicast is successful, this latency will be deter-
mined by the multicast transport protocol: IP-multicast or the tree-based
multicast introduced earlier. Both protocols can be approximated as simple
packet-forwarding algorithms operating over forwarding trees. If the typi-
cal per-round fanout for a node is b, then a typical message will take
logb~N! hops from sender to destination. Given some information about the
distribution of response times for forwarding nodes, we could then calculate
a distribution of latency to delivery and an associated variance. Our
experience suggests that both mean latency and variance will grow as
logb~N!.

When the initial multicast does not reach some11 destinations, the
analysis is quite another matter. Suppose the initial multicast infects ~N
2 1! * ~1 2 «0! processes, for some constant 0, i.e., s0 5 1 1 ~N 2 1! * ~1
2 «0! (the sender always has a copy of the message). If we denote by rt the
number of correct processes that have not yet received a copy of the
message by time t, then r0 5 ~N 2 1! * «0. Given st and rt we now derive a
recurrence relation for st11 and rt11.

As before, we introduce constants p 5 b~1 2 «! and q 5 1 2 p. First,
we assume that processes do not crash. For a susceptible process, the
probability that at least one of the st infectious processes sends a gossip
message which gets through is 1 2 qst. Let k be the expected number of
newly infected processes. We then have k 5 rt * ~1 2 qst!, st11 5 st 1 k,
rt11 5 rt 2 k.

Now we can introduce process failures into the analysis. There are three
ways that a process can fail: they can crash before, during, and after the
gossip stage of the protocol. Here we are investigating the relationship
between the number of susceptible (hence, correct) processes and the
number of gossip rounds. The worst occurs when all faulty processes fail
before the gossip stage (similarly, we can relax the message failure rate,
but the worst case occurs when the loss rate is «). We now have st 5 st *
~1 2 t!, rt 5 rt * ~1 2 t!; k 5 rt * ~1 2 qst!; st11 5 st 1 k; rt11 5 rt 2
k. From these relations we can produce graphs such as Figure 6 in Section
6, which shows the number of susceptible processes as a function of the
number of gossip rounds with N 5 1000, the gossip fanout is 1, t 5
0.001, « 5 0.05, and «0 5 1.0 (the initial multicast fails).

Now, define vt to be the probability that a susceptible process gets
infected in any round prior to round t, and define wt to be the probability
that a susceptible process gets infected in round t. Observe, that, in any
round, all the currently susceptible processes have equal probability of
getting infected. We have vt 5 1 2 rt/N and wt 5 vt 2 vt21. From this we
are able to produce Figure 7 in Section 6, showing the probability for a

11The case where the initial multicast reaches no processes corresponds to «0 5 1, s0 5 1, and
r0 5 N 2 1.
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correct process to receive a message in a certain round. The figure super-
imposes curves for various values of N: 10, 128, and 1024. Notice that the
curve has roughly the same shape in each case and that the peak falls close
to logfanout~N!.

A.7 Failure Predicates

In this section we show how to calculate a bound on the probability of a
pbcast, in a particular round and state, ending in an undesired (“failed”)
state on round R:

Ft~st, rt, f#t!

(f# t is the total number of faulty processes that have failed prior to time t,

f# t 5 O0#i,t f i).
Given F, the reliability of pbcast can be found by examining the value of

F for the initial state of the protocol, or F0~1, N 2 1,0!. (Making a more
optimistic assumption, we could compute F0~N*~1 2 «!, N*«, 0!, giving
the expected outcome if the initial multicast reaches all but N*« processes).
This computation would then yield values for the pbcast parameters which
will give a sufficiently high reliability for the desired use.

Values of F are calculated in the context of a predicate that defines
whether a run of the protocol failed or not, according to its final state.
Failure states correspond to outcomes we wish to avoid. The predicate,
P~S, F!, is defined over the total number of infected processes (S) (possi-
bly including some faulty processes) and the total number of faulty pro-
cesses (F). This predicate can be defined differently, depending on the use
of pbcast.

To illustrate this, we now give two predicates and use them to explore the
predicted reliability of pbcast in the environment of interest to us. The
first, predicate I, defines a failed pbcast to be one that reaches more than
sN processes in a system, but less than ~1 2 s!N processes. For a value of
s 5 0.1 this captures the notion of failure that might arise in the case of
the General of the introduction:

P~S, F! 5 ~S $ sN! ∧ ~S # ~1 2 s!N! (I)

Predicate II would make sense if pbcast were used as the basis of a
quorum replication algorithm (a topic discussed in Birman [1997]). For
such applications, the worst possible situation is one in which pbcast
reaches about half the processes in the system: neither a clear majority nor
a clear majority, with failed processes representing a possible “swing vote.”
To capture this, the predicate counts failed processes twice: it pessimisti-
cally totals all of the processes that may have been infected, so that a failed
pbcast is one in which both the percentage of infected processes is less than
a majority (with faulty processes counting as being uninfected) while the
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percentage of infected processes is larger than a minority (with faulty
processes counting as infected):

P~S, F! 5 SS 2 F ,
N 1 1

2 D ∧ SS 1 F $
N 1 1

2 D (II)

The calculation works backward from the last round. For each round, we
sum over the possible number of failures in this round and the number of
infectious processes in the next round. This is done using the calculations
for the next round and the recurrence relation, R, in order to get the two
following equations. The first equation calculates bounds on the probabili-
ties for round R; the second equation calculates bounds for the previous
rounds (here we take P~S, F! 5 1 if true and 0 if false):

FR~SR, rR, f#R! # O
0#fR#sR1rR

P$ft%P~N 2 rR, f#R 1 fR!

Ft~st, rt, f#t! # O
0#ft#st

~P$ft% O
0#st11#rt

R~st, rt, ft, st11!Ft11~st11, rt 2 st11, f#t 1 ft!!

(4)

We do not know the exact distribution of P$ft% because individual
processes can fail with probabilities anywhere in @0..t#. However, we can
apply Eq. (2) to get bounds on the two equations above. For example, the
bound for Eq. (4) is

Ft~st, rt, f#t! # O
0#ft#st

SS st

ft
D~t!ft~1 2 t!st2ft max

0#i#ft

O
0#st11#rt

R~st, rt, i, st11!

Ft11~st11, rt 2 st11, f#t 1 i!D.

Given the parameters of the system and a predicate defining failed final
states of the protocol, we can now compute bounds on the probability of
pbcast ending up in a failed state. This was done to obtain the graphs
presented in Section 6 of the article.

B. PSEUDOCODE FOR THE PROTOCOL

The following code is executed, concurrently, by all processes in the system.
Notice that, per optimization 5, the “rounds” need not be synchronous.
Although round numbers arise in the protocol, they are used in a manner
that does not require processes to be in the same round at the same time.
For example, if process p is in round n when it sends a gossip message to
process q, process q ’s round number is not relevant. Instead, if q solicits a
retransmission from p, it does so using p ’s round number from the gossip
message.
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pbcast(msg):
add_to_msg_buffer(msg);
unreliably_multicast(msg);

first_reception(msg):
add_to_msg_buffer(msg);
deliver messages that are now in order; report gaps after suitable
delay;

add_to_msg_buffer(msg):
slot:5 free_slot;
msg_buffer[slot].msg:5 msg;
msg_buffer[slot].gossip_count:5 0;

gossip_round: (* Runs every 100ms in our implementation *)
my_round_number :5 my_round_number11;
gossip_msg :5 <my_round_number, digest(msg_buffer)>;
for(i 5 0; i , b*N/R; i :5 i 1 1)

{ dest :5 randomly_selected_member send gossip_msg to dest; }
foreach slot

msg_buffer[slot].gossip_count
:5 msg_buffer[slot].gossip_count11;

discard messages for which gossip_count exceeds G, the garbage-
collection limit;

rcv_gossip_msg(round_number, gmsg):
compare with contents of local message buffer;
foreach missing message, most recent first

if this solicitation won’t exceed limit on retransmissions per
round

send solicit_retransmission(round_number, msg.id)
to gmsg.sender;

rcv_solicit_retransmission(msg):
if I am no longer in msg.round, or if have exceeded limits for this
round

ignore
else

send make_copy(msg.solicited_msgid) to msg.sender;
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