
NEVRLATE: Scalable Resource Discovery

Ajay Chander �

Computer Science Department
Stanford University

ajayc@cs.stanford.edu

Steven Dawson, Patrick Lincoln, David Stringer-Calvert y

Computer Science Laboratory
SRI International

fdawson,lincoln,davescg@csl.sri.com

Abstract

A scalable and expressive peer-to-peer (P2P) network-
ing and computing framework requires efficient resource
discovery services. Here we propose NEVRLATE, for
Network-Efficient Vast Resource Lookup At The Edge, an
efficient organization of directories or directory mirrors,
providing a scalable distributed resource discovery ser-
vice. NEVRLATE organizes directory servers in an approxi-
mate two-dimensional grid, or a set of sets of servers, for
registration to occur in one ’horizontal’ dimension, and
lookup to occur in the other ’vertical’ dimension. The pay-
off of organizing n servers into a structure like this is to
achieve O(

p
n) message complexity for registration, and

nearly constant complexity lookup. At extra cost NEVRLATE
can provide fault tolerance, high availability and security,
anonymity, and privacy. The protocol described can be seen
as a way to organize Gnutella supernodes, or as a perfor-
mance extension of Freenet’s architecture. In addition, it
supports expressive lookup mechanisms, and may provide a
basis for a truly scalable worldwide infrastructure for the
semantic and the extended web.

1. Motivation

Peer-to-peer computing and networking, and more gen-
erally any massively distributed service, requires several
layers of infrastructure. First, a distributed base of com-
puting, storage, and communication capability must exist.
Second, in order to have a thriving global structure, the par-
ties controlling the digital and infrastructure resources must
be motivated to participate in the P2P network (e.g., mil-
lions of teenagers join in order to share MP3 files to listen
to, or the hundred thousand employees of a multinational
corporation join to further their employer’s interest.) Fi-
nally, there must exist mechanisms that are aware of and

�Supported in part by DARPA grant N66001-00-C-8015
ySupported in part by the Office of Naval Research under grant

N00014-01-1-0837

utilize this global space of computational resources to pro-
vide facilities for efficient lookup, wide-area programming,
security, fault tolerance and so on.

In this paper, we focus on distributed directories for dis-
tributed resources. Informally, we say that a directory is
a mapping from some description of a resource, to the lo-
cation or other information about a resource. The notion
of location can be generalized to include any way of sat-
isfying the request, but for our purposes we will focus on
URI [14] as the notion of location. A resource description
can include simple text strings like “King Lear”, Jini [6]
service descriptions, or hashes computed from such things.
Directories are fundamental to daily life, the Internet, and
just about any future service or computing platform. A
commonly used directory, the telephone book, maps names
to phone numbers. The Domain Name Service (DNS)
maps domain names like www.csl.sri.com to IP ad-
dresses. Jini provides a LAN-scale lookup service. Google
(http://www.google.com/) provides a lookup ser-
vice from keywords to URLs. Napster provided a mapping
from hashes of song names to IP addresses where those
songs can be obtained. Unfortunately, none of these ser-
vices provides all the features one might want in a global
directory service:
� Distributed. There is no single point of failure and no

single point to sue out of existence. Distributed services can
be more scalable, more efficient, more available (through
fault and intrusion tolerance), and more secure than local-
ized services.
� Internet Scale. The system should have support for In-

ternet scale communities. IPv6, JXTA [13], and Gnutella
UUDI contemplate addressing up to 2128 devices or ser-
vices.
� Multi-hierarchical. No single name based hierarchy is

imposed on the structure of the network. Multi-hierarchical
systems allow multiple conflicting viewpoints of organiza-
tion to be superposed for efficiency, structure, and function.
Hierarchies are good choices in certain contexts; DNS is a
wonderful thing, and the GeoWeb (http://www.dgeo.
org/) and The Open Directory (http://dmoz.org/)

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

provide orthogonal hierarchies with significant interest and
merit, but not all services and uses fall into strict hierarchy
tied to naming.
� Efficient. For network efficiency, utilizing relatively

few messages of relatively small size is crucial. Another
desirable is (local) storage efficiency. Based on the applica-
tion, computational efficiency of the individual host may be
a concern, but proxy-based architectures could preempt this
issue.
�Reliable. When a resource is published by a member of

the network, and after some time that resource is requested,
will the resource always be found? Google is an example of
a relatively reliable system of Internet scale: if Google has
spidered a page, and you search for keywords in that page,
you are very likely to obtain a pointer to that page, perhaps
among many others.
� Responsive. When a resource is published, it be-

comes accessible after a relatively short delay. When a re-
source becomes unavailable, it is no longer returned in re-
sponses to queries after a relatively small delay. Ideally, one
could imagine real-time responsiveness, but more realisti-
cally seconds of delay may be acceptable and achievable.
Internet search-type lookup services tend to run with days
or months of delay.

In this paper, we present NEVRLATE, for Network Ef-
ficient Vast Resource Lookup At The Edge, whose sweet
spot is providing directory service for massive numbers of
participants (millions and more) with resources that are
� Fairly stable (do not disappear, change, or move with

higher frequency than queries are made)
� Simply described (the descriptions are small and struc-

tured)
Examples of domains where these assumptions hold in-

clude phone books, Internet sharing of files (e.g. KaZaA,
Gnutella, Napster), business-to-business exchanges, service
registries, open-source software repositories, and facilitated
software agent systems.

1.1. Related Work

Gnutella [1] is the foremost large-scale, fully decentral-
ized directory and distribution system running on the Inter-
net. However, it faces serious scaling and reliability chal-
lenges. As Gnutella networks get large, about half of the
network traffic sent over Gnutella is overhead to support
the lookup of a resource. Gnutella requests have a time-to-
live (TTL) feature that limits the virtual topology reach of
a request to some small constant number of hops K, which
may be 5 or 7. Thus, if a resource is published in a large
network, it will not be found by lookups from most partic-
ipants unless the neighbors of the publisher at distances at
most K; 2K; : : : lookup that resource. A popular resource
has a small effective K, and will be propagated around the

network to most clients. For this to be a viable strategy,
there must be a great number of common interests among
Gnutella servers. That is, if you are to find something, it
must be of interest to a K-hop neighbor of yours.

Freenet [5] is another directory and document sharing
service with better scalability, where requests are sent along
a chain. A Freenet server receiving a request forwards that
request to one of its neighbors that is the most likely to
have the resource in question. Freenet scales much more
gracefully than Gnutella, but provides only a limited sort
of directory service (which works well enough for static
entities). Since paths are constructed probabilistically, and
since no server has any responsibility for maintaining copies
of resources, unpopular documents may get “lost” and the
lookup process may traverse significant portions of the en-
tire peer space. Since it uses hashes, Freenet also provides
strong anonymity and privacy features that are beyond our
immediate interests here.

Most Internet search-type lookup services fail to be re-
sponsive, and fail to be widely distributed. DNS is hierar-
chical, and is not rapidly responsive. Jini is not designed to
scale beyond the LAN. File-distribution services that rely
on a central index (e.g., Napster) are efficient, but provide a
single point of failure that can experience hardware failure,
power outage, misconfiguration, and concerted legal action.
In addition, this simple architecture doesn’t scale.

Recent proposals for distributed peer-to-peer platforms
have included Chord [7], Globe [11], OceanStore [10] and
CAN [8]; we refer the reader to [7] for a comparison of
their merits. NEVRLATE provides a greater degree of flexi-
bility in adjusting publication and lookup costs based on the
structure of resources (see Section 3.2), and has support for
lookups with higher level semantics (Section 3.3).

1.2. Extreme versions of directory services

At one extreme of the design space of P2P directory ser-
vices is an approach with no caching and no time-to-live
constraints on searches. Let’s call such a service GIntro-
vert. To publish a resource, one does nothing. To look up
a resource, one sends a lookup message to all neighbors,
which forward the message on to all their neighbors, and
see if they have the resource in question. If they do have
the resource, they send a response back to the looker. In
a network of size n, the cost of publication in GIntrovert is
constant, O(1), and the cost of lookup is O(n).

At the other extreme in this dimension of design space
is a directory service where publication amounts to pushing
the directory information to all servers, and lookups become
entirely local. Call such a service GExtrovert. To publish a
resource, one sends registration messages to all neighbors,
which forward the message on to all their neighbors, storing
all the directory information locally. In a network of size n,

2

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

the cost of publication in GExtrovert is O(n), and the cost
of lookup is constant, O(1).

NEVRLATE, described below, plays in between these ex-
tremes. Section 2 explains the general idea behind NEVR-
LATE, and Section 3 describes the full system.

2. Basic NEVRLATE

The essential idea behind NEVRLATE is for directory
servers to be organized into a logical two-dimensional grid,
or a set of sets of servers, enabling registration in one ‘hori-
zontal’ dimension, and lookup in the other ‘vertical’ dimen-
sion. The payoff of organizingn servers into a structure like
this is to achieve O(

p
n) message complexity for registra-

tion, and O(
p
n) or better message complexity for lookup.

PUBLISH

L
O

O
K

U
P

Figure 1. NEVRLATE Server Organization

In Figure 1 a set of sets of servers is shown. Each node
in the graph is a directory server, which generally will be
a single physical computer with good network connectiv-
ity. Each set of servers, represented as a vertical cloud, is
a relatively well connected set of directory servers, all of
which can reach each other member of the set. The set of
sets of servers, represented as the entire rectangle, is the en-
tire NEVRLATE network. Each NEVRLATE node maintains
several data structures:
� ID (IP address)
� Local resource lookup table (list of resource descrip-

tions and their associated URIs)
� List of server IDs in its set or vertical column
� List of server IDs in other sets, one per set
� Estimate of the total number of NEVRLATE nodes
� Estimate of the total number of sets
� List of estimates of the size of each set
� A peer to contact in case the current set is split.
A directory server may learn of a resource and its lo-

cation (URI) through various means. For example, the di-

rectory server might itself contain some resource of inter-
est, such as a digital copy of the 1681 printing of Shake-
spear’s King Lear. Alternately, some other machine (not
a NEVRLATE directory server) may contact the NEVR-
LATE node with a resource description and location, such
as “2001 PVS manuals”) “http://pvs.csl.sri.
com/manuals.html”. The directory server then regis-
ters this resource and its URI in its own local lookup ta-
ble, and sends the resource description and its location to
one server in each other set. The receiving servers in the
other sets do not forward on the new resource information
to all members of their sets. Thus, a server might have a list
of local resources that contains “1681 printing of Shake-
spear’s King Lear”) “http://NEVRLATE-17.csl.
sri.com/KingLear.html” and “2001 PVS manuals”
) “http://pvs.csl.sri.com/manuals.html”.

When a directory server is queried about the location of
resources, say “What PVS manuals are available?”, it sends
the query out to all the servers in its set. Since every re-
source known to NEVRLATE is registered in some server in
every set, every resource description is matched against the
query and hits are returned.

Thus, in contrast to approaches relying on time-to-live
(TTL) or ‘geographic’ restrictions on publication and query
propagation, after time for propagation delay, once a re-
source description is submitted to NEVRLATE, all future re-
lated lookups will discover that resource.

3. NEVRLATE Protocols

We describe here the basic mechanisms of NEVRLATE;
the interested reader may refer to Section 4 for pointers to a
full specification and a prototype implementation.

3.1. Joining and Leaving NEVRLATE

To support the directory services needed in a dynamic
P2P environment, the NEVRLATE network must itself be
dynamic, accommodating both new nodes joining the net-
work and existing nodes leaving the network. Although
there is no requirement that NEVRLATE users also be
NEVRLATE providers (servers), there is also no assumption
of a static NEVRLATE network separate from the network
of users. NEVRLATE is designed to grow smoothly as addi-
tional resources are made available and to adjust automati-
cally as existing resources disappear. Moreover, the proto-
cols that govern the expansion and contraction of a NEVR-
LATE network are designed to minimize the amount of ad-
ministrative overhead necessary to maintain the network.

The major issues that must be addressed in the join/leave
protocols for NEVRLATE are
� Maintaining network balance. As the total number

n of nodes in the NEVRLATE network changes, the number

3

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

of sets and the size of each set should be maintained near
their targets for the network so that the costs of publish and
lookup operations scale as expected.

Based on the number of lookups per publication, and
maximum storage and other resource constraints, the op-
timal shape of the array (number of sets vs. nodes per set)
will vary. Whatever the optimal shape, the number of sets
must be maintained actively.
� Sharing and maintaining resource knowledge. A

node that joins the NEVRLATE network must be populated
with resource information so that it becomes useful to the
network. When a node leaves the network, the remainder
of its node set must still have access to the portion of the
resource directory it maintained, so that the set can con-
tinue to answer all lookup requests directed to it; in addi-
tion, nodes (in other sets) for which the leaving node was
the publish node must subsequently publish to some other
node in the leaving node’s set.
� Maintaining network metadata. When a node joins

or leaves the NEVRLATE network, the network metadata
maintained by the nodes (see Section 2) must be appropri-
ately updated.
� Efficiency. The communication and processing over-

head of joining and leaving the NEVRLATE network must
be minimized. In particular, the number of nodes involved
in any join/leave operation and the amount of information
exchanged between those nodes should be kept as small as
possible.

Joining NEVRLATE The basic join protocol begins with
the joining node sending a join request to an arbitrary
NEVRLATE node (in the same way that resource lookup re-
quests are made). This node may further forward the join re-
quest until a node willing to receive the new node is found.
The receiving node uses its current estimates of the sizes
of each set in the network to determine where (to which
set) the joining node should be assigned to best maintain
network balance. In the process, it may determine that the
number of sets needs to be increased, possibly resulting in
a set splitting operation (described later). After determin-
ing the set to which the joining node will be assigned, the
receiving node forwards the join request to its publish peer
for that set (which may be itself), referred to here as the tar-
get node. The target node then sends to the joining node
(1) the IDs of all the nodes in its set and (2) the IDs of all
its publish peers (one node in every other set). The joining
node then joins the target node’s set by notifying each node
in set (1). Next, the joining node forms its own set of pub-
lish peers by requesting from each node in set (2) the ID of
a random node in that node’s set. In the process, each node
in set (2) replaces the ID of its publish peer for the join-
ing node’s set with the ID of the joining node. This ensures
both that the joining node becomes a publish peer of another

node (and thus can receive publish requests that populate it
with resource directory entries) and that there is diversity
among the publish peer sets of the nodes in any given set.
The latter property is important in maintaining viable pub-
lish peer sets when nodes leave the network. Initially, the
joining node’s portion of the resource directory is empty,
and it will be populated with resource directory entries only
by receiving publish requests.

Leaving NEVRLATE Unlike joining, which always hap-
pens as the result of an explicit request, a node may leave
the NEVRLATE network either explicitly (by notification)
or implicitly (by failure). In either case, two main problems
must be addressed: (1) the loss to the leaving node’s set of
the leaving node’s portion of the resource directory, and (2)
the potential loss of a publish peer for nodes in other sets.

The first problem poses a significant challenge. The leav-
ing node’s portion of the directory may be quite large and,
hence, costly to recover. Even if the node leaves explicitly,
it would need to communicate (distribute) its portion of the
directory to the remaining members of its set. But if the
node fails, this sort of full recovery is not even an option.
One solution is to ignore the full recovery issue, and instead
enhance the lookup protocol to perform incremental, on-
demand recovery, in which lookup requests unanswerable
by an incomplete node set are forwarded to another set (or
sets) and the answers added to the first set. Another solu-
tion is to rely on other approaches to fault tolerance, such
as replication, as described in Section 3.5.

The solution to the second problem is essentially the
same whether the leaving node leaves explicitly or implic-
itly. Only the nodes that have the leaving node as a pub-
lish peer know it, and thus they cannot be explicitly noti-
fied when the leaving node leaves the network. Instead, the
nodes that have the leaving node as a publish peer must in-
fer the loss of the leaving node from the failure of the pub-
lish protocol. Upon realizing the failure, each such node
can determine a replacement publish peer for the leaving
node’s set by querying the members of its own set — the
join protocol ensures that some member of the set will have
a publish peer different from the leaving node, and thus, all
nodes will continue to have a complete set of publish peers
after the leaving node has left the network.

Set Splitting To maintain acceptable dimensions in the
NEVRLATE network, it is sometimes necessary to increase
the number of sets. To increase the number of sets while
maintaining an acceptable range of set sizes, NEVRLATE
uses a set splitting operation to divide one set into two sets
of roughly equal size. Of course, the two sets produced in
this way are incomplete — neither maintains the complete
directory. To address this issue, each node in each division
of the split records the ID of a node in the other division.

4

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

When a lookup request to a node in one division cannot be
answered by that division, it is forwarded to the other divi-
sion, and the results are then stored by a node in the first
division in addition to being returned to the querying node.
If a set resulting from an earlier split is subsequently split,
only information pertaining to the latest such split is main-
tained directly, and any remaining incompleteness in the di-
rectory in those sets after possible multiple splits is handled
in a manner similar to that of lost nodes.

Set Absorption Just as the number of sets may need to
be increased as the network grows, the number of sets may
also need to be decreased as nodes leave the network. To
reduce the number of sets in the network, NEVRLATE uses
set absorption, whereby an existing set (perhaps an incom-
plete set or one of smaller cardinality) is simply recycled by
eliminating the entire set and rejoining each node from that
set into the network as a fresh node.

3.2. Ordered Search

In the basic NEVRLATE system, searching for an avail-
able resource is performed by querying every server in the
querying node’s set, yielding an O(

p
n) lookup cost. This

cost is necessary, as although we know that if the resource
has been published, some node in the set will know about
it, we do not know which node. By introducing some basic
knowledge of ‘what belongs where’ and depending on very
low flux of nodes into and out of the network, we can reduce
the O(

p
n) cost to O(log n) or O(1).

Many resources have a natural ordering relation; for ex-
ample, telephone numbers can be ordered by � over the
natural numbers and song titles by lexicographic ordering.
For any collection of resources that have a defined ordering
(or can be hashed into a sequential linear finite order) we
can overlay that ordering on the members of the set in the
NEVRLATE system, creating a sequence of server nodes in
each set. Enforcement of the ordering is performed at publi-
cation time, by inserting the new resource on any server that
maintains the ordering within the sequence. Lookup is then
performed by binary search, yielding worst-case O(logn)
lookup.

Optimizing this approach, we can define subsets of the
ordering range for which each server in the sequence is re-
sponsible in a manner similar to bucket sort. The servers
can be assigned ranges within the ordering, and requests are
published directly to the node responsible for that region of
the ordering. Lookup requests can subsequently be directed
immediately to the responsible server, giving a constant cost
of lookup in the usual case. When the resource descriptions
are hashes of information, approaches similar to LH* for
distributed linear hashing can be used to manage distributed
growing hash tables [15].

In declaring each server in the set to be responsible for a
particular part of the ordering, we made no assumptions on
the distribution of resources within the ordering. A reason-
able approach is to make the subsets of the ordering equal in
size, but if more is known about the distribution of resources
within the ordering, the subsets could be of differing sizes
— optimized so that the number of resources known to each
server is approximately equal. However, such distribution
of the resources themselves may not be interesting — what
is often more interesting is the queries for the available re-
sources. If a certain pattern of queries is expected, the re-
sources may be balanced across servers to make the number
of queries to each server approximately equal.

Ordered search optimizations of NEVRLATE are particu-
larly effective when the membership is static. In a NEVR-
LATE system with a dynamic membership, the join/leave
protocols must be enhanced to maintain the orderings im-
posed. In a system with a small join/leave rate, simple vari-
ations on the protocols described earlier will suffice, but in
highly dynamic systems, the overhead required to hand off
responsibility may well overwhelm the publish/query traf-
fic.

To cope with highly dynamic systems, further optimiza-
tions of NEVRLATE utilize a ramped hashing approach. In
the first optimization, we considered balancing the resource
index size or balancing the query load, with implicit as-
sumptions of equal reliability and stability of the servers
in the set. This could be considered equivalent to a hash-
ing function with a flat distribution. If these assumptions
are flawed, we need an allocation of resources to servers
that favors stable servers — those that have good network
connectivity, and have been in the NEVRLATE network for
longer. Introducing this notion, we obtain a ramped (or
curved) distribution from the hashing function. A non-flat
assignment of hashing function results to servers can be ad-
vantageous in general for distributed linear hashing. Fur-
ther, the curvature of the hashing function can be dynamic
itself — responsive to the current join/leave rates, the profile
of resources published, and the queries being performed.

3.3. Lookups with Higher-Order Semantics

The discussion so far has assumed that the resource in-
dex is an association of key/value pairs and that lookup cor-
responds to equality of the given key with some stored key.
NEVRLATE is, however, not restricted to such a simple ap-
proach to resource discovery. A more general approach is
to allow the query to contain both a key and an equivalence
function. Commonly used equivalences could be prede-
fined in the system (e.g., soundex matching, substrings) and
others could be specified by regular expressions, or using
a general-purpose programming/scripting language. These
equivalences might be used implicitly, while other equiva-

5

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

lences might be sent explicitly with the query.
An application under development (see Section 4) in-

volves the use of NEVRLATE to provide distributed lookup
services for software agents. An agent can use NEVRLATE
to publish a description of its capabilities, similar to the
Jini lookup service for local area networks, a description
of its API, or a formal description of the input-output rela-
tion. Lookup of agents can be very simple and direct (exact
match for name or exact match on API), or can be done in a
delegation-based computing style.

Delegation-based computing presumes the availability of
a large set of agents that have published a machine-readable
description of the service they can perform in some logic.
Agents are invoked by some process delegating some com-
putation, described as a goal in that same logic. A facili-
tating service then attempts to prove the goal from the pub-
lished axioms representing capabilities of agents using log-
ical inference. A successful proof can then be read as a plan
for the agents to be invoked. The logic involved can be as
simple as propositional classical logic (which might reflect
the types of arguments, like Integer and String), first-order
classical logic (where input-output relation might be de-
fined), or more exotic logics like higher-order logic (where
one can reason about programs that take programs as argu-
ments) and linear logic (or other resource-sensitive logics).

NEVRLATE provides a scalable means to publish such
logical descriptions of agent capabilities, and then to per-
form distributed facilitation of agent-based computing. For
example, one can delegate a mathematical expression “38
+ sqrt (16)” and an agent that knows how to evaluate sqrt
may be invoked to reduce “sqrt 16” to “4”, and an agent
that knows how to evaluate + can be invoked on the re-
sult to produce the final answer of “42” which is returned
as the result. A more substantial example might involve
large bioinformatic calculations involving publicly avail-
able databases of proteomic strings, certain Boyer-Moore
fast string-matching (BLAST) agents, and certain other
evaluation agents to choose among many matches. The
key novel features of NEVRLATE include the global reach
(if there is an agent able to compute something somewhere
in the network, it will be found) and efficiency. Note that
agents may or may not be mobile. An agent might provide
an interface to a large immobile database, or it might be a
stateless bit of code that can be copied arbitrarily, or it might
be mobile and contain state that should not be copied, but
that can be moved.

3.4. Resource Partitioning

One approach to scalable resource discovery is to parti-
tion the global resource set into categories, and provide a
resource discovery mechanism for each category or some
collection of categories. A meta-process directs queries to

the relevant resource discovery mechanism, minimizing the
amount of resource space that must be searched to locate
items of interest. Any type of categorization may be used —
for example, semantic, geographical, or perhaps network-
connectivity oriented.

To enable collections of NEVRLATE systems to cooper-
ate in such a manner, a meta-protocol is used to locate re-
sources on peer-grids. Resource publication is still main-
tained locally within the grid, but if a resource cannot be
found on the current grid, the request may be forwarded to
any number of peer-grids. This is placed under user control,
so that the query may be forwarded to specified alternate
grids. The forwarding protocol has an effect similar to the
TTL on queries in Gnutella, where queries are forwarded
for a specified number of hops.

3.5. Extensions to NEVRLATE

Here, we briefly sketch extensions to the basic NEVR-
LATE system that provide security and fault-tolerance. We
are continuing to experiment with additions to the basic sys-
tem, and will report on them further in future work.

A simple strategy that protects against random server
faults is based on redundancy while publishing content.
Nodes register their content with more than one server in
each set, and in the case of ordered sets more than one server
shares the responsibility for any subset of the ordering. The
departure of a node in a fault-tolerant NEVRLATE system
might not affect the span of the resource directory as the lost
information may already be present with different members
of its set. However, to be resilient against multiple failures
in a set, a node can share the intersection of its directory en-
tries with the entries of the departing node, with a randomly
chosen small subset of members in its set. Moreover, as
in the basic system, the lookup protocol may be enhanced
to provide incremental, on-demand recovery in case some
of the lost information had not been duplicated within the
departing node’s set.

The NEVRLATE system may potentially be abused by
byzantine users who publish non-existent resources, mis-
leading resource descriptions, or make casual resource re-
quests and provide byzantine responses to queries. The
NEVRLATE system, like any other general directory ser-
vice is susceptible to such behavior. General content
tracking and auditing mechanisms including watermarking
and quality-of-service ratings for the directory nodes can
enforce “good-citizen” behavior from participating peers.
Bandwidth-based queuing algorithms may be used to as-
sure fairness among competing requests at directory nodes,
and thwart resource starvation attacks. With additional ex-
pense, redundant queries could be performed, and hybrid
Byzantine-agreement algorithms could be employed [12].
Further, in a PKI-based world, authentication of publishers,

6

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

servers, and subscribers could be employed to reduce the
possibility of a distributed denial of service attack.

4. Implementation

The NEVRLATE protocol has been formally specified
and a Java prototype implemented [4]. A plugin [4] for the
Gnutella client LimeWire was used to populate the NEVR-
LATE directories with resources existing on the Gnutella
network. The specification was done in MuCAPSL [9], a
general purpose specification language for group protocols.
The rigor of the specification clarified and improved the
initial protocol design, and will provide a systematic ba-
sis for a formal analysis. The NEVRLATE system has re-
cently been used [3] to provide resource lookups for agents
in the Open Agent Architecture [2], which is a general
framework for delegation-based computing. This work uses
the DARPA Agent Markup Language (DAML) to express
NEVRLATE queries, and demonstrates the framework’s sup-
port for lookups with higher-order semantics.

5. Conclusions and Work in Progress

We have described NEVRLATE, a scalable resource dis-
covery service that occupies a middle ground between a
central directory and full replication of directory services.
The basic system allows for O(

p
n) publication and lookup

cost, although with information about orderings over re-
sources or hash functions, we can obtain constant time
lookups at the expense of slightly greater publication cost.
The protocol has been formally specified and a prototype
implemented; we are continuing to further analyze the evo-
lution of the grid (as a stochastic process) and experiment
with extensions for security. This effort will provide the
foundations for distributed agent services, transforming the
web from its current status as an information resource into a
computing resource, capable of independently solving com-
plex problems.

Acknowledgments Latifa Bouabdillah, Grit Denker and
David Martin formally specified and implemented the
NEVRLATE protocol, and this process greatly benefited the
initial design. Imen Atallah implemented the LimeWire
plugin. David Martin provided a great usage study by im-
plementing a plugin for the OAA which used NEVRLATE to
discover agents within a distributed delegation-based com-
puting architecture. We also thank Mary Baker, Drew Dean,
Steven Eker, TJ Guili, Raymonde Guindon, Andrea Lin-
coln, Petros Maniatis, John Mitchell, Natarajan Shankar,
Vitaly Shmatikov and Steven Weiner for interesting related
discussions.

References

[1] Clip2, The Gnutella Protocol Specification, http://
www.clip2.com, 2000.

[2] D. L. Martin, A. J. Cheyer, and D. B. Moran, The Open
Agent Architecture: A framework for building distributed
software systems, Applied AI, January-March 1999.

[3] I. Atallah, G. Denker and D. Martin, Bridging Between
the Semantic Web and a Delegated Computing Frame-
work: The DAML-OAA Bridge Agent, Technical Report
SRI-CSL-2002-04, Computer Science Laboratory, SRI
International, March 2002.

[4] I. Atallah, L. Bouabdillah, G. Denker, and D. Martin,
Detailed Design and Implementation of NEVRLATE: A
Scalable Peer-to-Peer Framework for Resource Discov-
ery, Technical Report SRI-CSL-2002-03, March 2002.

[5] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong,
Freenet: A Distributed Anonymous Information Storage
and Retrieval System, International Workshop on Design
Issues in Anonymity and Unobservability, ed. by H. Fed-
errath, Springer, NY, 2001.

[6] SUN Microsystems, Jini Architecture Specification,
http://www.sun.com/jini/specs/.

[7] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek,
and H. Balakrishnan, Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications, ACM SIG-
COMM 2001, San Diego, CA, August 2001.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, A Scalable content-addressable network, ACM
SIGCOMM 2001, San Diego, CA, August 2001.

[9] J. Millen, Common Authentication Protocol Specifica-
tion Language, Available at http://www.csl.sri.
com/users/millen/capsl.

[10] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.
Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weather-
spoon, W. Weimer, C. Wells, and B. Zhao, OceanStore:
An Architecture for global-scale persistent storage, In
Proc. ASPLOS 2002, pp. 190–201.

[11] A. Barker, E. Amade, G. Ballintijn, I. Kuz, P. Verkaik,
I. van der Wijk, M. van Steen, and A. Tanenbaum, The
Globe distribution network, In Proc. 2000 USENIX An-
nual Conference, pp. 141–152.

[12] P. Lincoln and J. Rushby, A Formally Verified Algorithm
for Interactive Consistency Under a Hybrid Fault Model,
Fault-Tolerant Computing Symposium, FTCS 23, 1993.

[13] SUN Microsystems, Project JXTA, http://www.
jxta.org/, 2001.

[14] T. Berners-Lee, Universal Resource Identifiers in WWW,
A Unifying Syntax for the Expression of Names and Ad-
dresses of Objects on the Network as Used in the World-
Wide Web, RFC 1630, CERN, June 1994.

[15] W. Litwin, M.-A. Neimat and D. Schneider, LH* — A
scalable, distributed data structure, ACM Transactions
on Database Systems, 1996.

7

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

