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ABSTRACT
Napster pioneered the idea of peer-to-peer file sharing, and sup-
ported it with a centralized file search facility. Subsequent P2P sys-
tems like Gnutella adopted decentralized search algorithms. How-
ever, Gnutella’s notoriously poor scaling led some to propose dis-
tributed hash table solutions to the wide-area file search problem.
Contrary to that trend, we advocate retaining Gnutella’s simplicity
while proposing new mechanisms that greatly improve its scalabil-
ity. Building upon prior research [1, 12, 22], we propose several
modifications to Gnutella’s design that dynamically adapt the over-
lay topology and the search algorithms in order to accommodate the
natural heterogeneity present in most peer-to-peer systems. We test
our design through simulations and the results show three to five or-
ders of magnitude improvement in total system capacity. We also re-
port on a prototype implementation and its deployment on a testbed.

Categories and Subject Descriptors
C.2 [Computer Communication Networks]: Distributed Systems

General Terms
Algorithms, Design, Performance, Experimentation

Keywords
Peer-to-peer, distributed hash tables, Gnutella

1. INTRODUCTION
The peer-to-peer file-sharing revolution started with the introduc-

tion of Napster in 1999. Napster was the first system to recognize
that requests for popular content need not be sent to a central server
but instead could be handled by the many hosts, or peers, that al-
ready possess the content. Such serverless peer-to-peer systems can
achieve astounding aggregate download capacities without requiring
any additional expenditure for bandwidth or server farms.1 More-
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1For instance, 100,000 peers all connected at 56kbps can provide
more aggregate download capacity than a single server farm con-
nected by two OC-48 links.
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over, such P2P file-sharing systems are self-scaling in that as more
peers join the system to look for files, they add to the aggregate
download capability as well.2

However, to make use of this self-scaling behavior, a node looking
for files must find the peers that have the desired content. Napster
used a centralized search facility based on file lists provided by each
peer. By centralizing search (which does not require much band-
width) while distributing download (which does), Napster achieved
a highly functional hybrid design.

The resulting system was widely acknowledged as “the fastest
growing Internet application ever”[4]. But RIAA’s lawsuit forced
Napster to shut down, and its various centralized-search successors
have faced similar legal challenges. These centralized systems have
been replaced by new decentralized systems such as Gnutella [8]
that distribute both the download and search capabilities. These sys-
tems establish an overlay network of peers. Queries are not sent to
a central site, but are instead distributed among the peers. Gnutella,
the first of such systems, uses an unstructured overlay network in
that the topology of the overlay network and placement of files within
it is largely unconstrained. It floods each query across this overlay
with a limited scope. Upon receiving a query, each peer sends a
list of all content matching the query to the originating node. Be-
cause the load on each node grows linearly with the total number
of queries, which in turn grows with system size, this approach is
clearly not scalable.

Following Gnutella’s lead, several other decentralized file-sharing
systems such as KaZaA [24] have become popular. KaZaA is based
on the proprietary Fasttrack technology which uses specially desig-
nated supernodes that have higher bandwidth connectivity. Pointers
to each peer’s data are stored on an associated supernode, and all
queries are routed to supernodes. While this approach appears to
offer better scaling than Gnutella, its design has been neither docu-
mented nor analyzed. Recently, there have been proposals to incor-
porate this approach into the Gnutella network [7]. Although some
Gnutella clients now implement the supernode proposal, its scalabil-
ity has neither been measured nor been analyzed.

That said, we believe that the supernode approach popularized
by KaZaA is a step in the right direction for building scalable file-
sharing systems. In this paper, we leverage this idea of exploit-
ing node heterogeneity, but make the selection of “supernodes” and
construction of the topology around them more dynamic and adap-
tive. We present a new P2P file-sharing system, called Gia.3 Like
Gnutella and KaZaA, Gia is decentralized and unstructured. How-
ever, its unique design achieves an aggregate system capacity that is

2This self-scaling property is mitigated to some extent by the free
rider problem observed in such systems [2].
3Gia is short for gianduia, which is the generic name for the hazelnut
spread, Nutella.



three to five orders of magnitude better than that of Gnutella as well
as that of other attempts to improve Gnutella [12, 24]. As such, it
retains the simplicity of an unstructured system while offering vastly
improved scalability.

The design of Gia builds on a substantial body of previous work.
As in the recent work by Lv et al. [12], Gia replaces Gnutella’s flood-
ing with random walks. Following the work of Adamic et al. [1], Gia
recognizes the implications of the overlay network’s topology while
using random walks and therefore includes a topology adaptation al-
gorithm. Similarly, the lack of flow control has been recognized as
a weakness in the original Gnutella design [16], and Gia introduces
a token-based flow control algorithm. Finally, like KaZaA, Gia rec-
ognizes that there is significant heterogeneity in peer bandwidth and
incorporates heterogeneity into each aspect of our design.

While Gia does build on these previous contributions, Gia is, to
our knowledge, the first open design that (a) combines all these el-
ements, and (b) recognizes the fact that peers have capacity con-
straints and adapts its protocols to account for these constraints.
Our simulations suggest that this results in a tremendous boost for
Gia’s system performance. Moreover, this performance improve-
ment comes not just from a single design decision but from the syn-
ergy among the various design features.

We discuss Gia’s design in Section 3, its performance in Section
4, and a prototype implementation and associated practical issues in
Section 5. However, before embarking on the description of Gia, we
first ask why not just use Distributed Hash Tables (DHTs).

2. WHY NOT DHTS?
Distributed Hash Tables are a class of recently-developed sys-

tems that provide hash-table-like semantics at Internet scale [25, 18,
27]. Much (although not all) of the original rationale for DHTs was
to provide a scalable replacement for unscalable Gnutella-like file
sharing systems. The past few years has seen a veritable frenzy of
research activity in this field, with many design proposals and sug-
gested applications. All of these proposals use structured overlay
networks where both the data placement and overlay topology are
tightly controlled. The hash-table-like lookup() operation provided
by DHTs typically requires only O(log n) steps, whereas in com-
parison, Gnutella requires O(n) steps to reliably locate a specific
file.

Given this level of performance gain afforded by DHTs, it is natu-
ral to ask why bother with Gia when DHTs are available. To answer
this question, we review three relevant aspects of P2P file sharing.

#1: P2P clients are extremely transient. Measured activ-
ity in Gnutella and Napster indicates that the median up-time for a
node is 60 minutes [22].4 For large systems of, say, 100,000 nodes,
this implies a churn rate of over 1600 nodes coming and going per
minute. Churn causes little problem for Gnutella and other systems
that employ unstructured overlay networks as long as a peer doesn’t
become disconnected by the loss of all of its neighbors, and even
in that case the peer can merely repeat the bootstrap procedure to
re-join the network. In contrast, churn does cause significant over-
head for DHTs. In order to preserve the efficiency and correctness
of routing, most DHTs require O(log n) repair operations after each
failure. Graceless failures, where a node fails without beforehand
informing its neighbors and transferring the relevant state, require
more time and work in DHTs to (a) discover the failure and (b) re-
replicate the lost data or pointers. If the churn rate is too high, the
overhead caused by these repair operations can become substantial

4We understand that there is some recently published work [3] that
questions the exact numbers in this study, but the basic point remains
that the peer population is still quite transient.
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Figure 1: Most download requests are for well-replicated files.

and could easily overwhelm nodes with low-bandwidth dial-up con-
nections.

#2: Keyword searches are more prevalent, and more im-
portant, than exact-match queries. DHTs excel at support-
ing exact-match lookups: given the exact name of a file, they trans-
late the name into a key and perform the corresponding lookup(key)
operation. However, DHTs are les adept at supporting keyword
searches: given a sequence of keywords, find files that match them.
The current use of P2P file-sharing systems, which revolves around
sharing music and video, requires such keyword matching. For ex-
ample, to find the song “Ray of Light” by Madonna, a user typically
submits a search of the form “madonna ray of light” and expects the
file-sharing system to locate files that match all of the keywords in
the search query. This is especially important since there is no unam-
biguous naming convention for file names in P2P systems, and thus
often the same piece of content is stored by different nodes under
several (slightly different) names.

Supporting such keyword searching on top of DHTs is a non-
trivial task. For example, the typical approach [11, 19, 26] of con-
structing an inverted index per keyword can be expensive to main-
tain in the face of frequent node (and hence file) churn. This is only
further complicated by the additional caching algorithms needed to
avoid overloading nodes that store the index for popular keywords.
It is possible that some of these problems maybe addressable in
DHTs, as indicated by the deployment of the Overnet file sharing
application [15], which is based on the Kademlia DHT [14]. Still,
DHT-based solutions typically need to go to great lengths to incor-
porate query models beyond the simple exact-match search. In con-
trast, Gnutella and other similar systems effortlessly support key-
word searches and other complex queries since all such searches are
executed locally on a node-by-node basis.

#3: Most queries are for hay,not needles. DHTs have exact
recall, in that knowing the name of a file allows you to find it, even
if there is only a single copy of that file in the system. In contrast,
Gnutella cannot reliably find single copies of files unless the flooded
query reaches all nodes; we call such files needles. However, we
expect that most queries in the popular P2P file-sharing systems are
for relatively well-replicated files, which we call hay. By the very
nature of P2P file-sharing, if a file is requested frequently, then as
more and more requesters download the file to their machines, there
will be many copies of it within the system. We call such systems,
where most queries are for well-replicated content, mass-market file-
sharing systems.

Gnutella can easily find well-replicated files. Thus, if most searches
are for hay, not needles, then Gnutella’s lack of exact recall is not a
significant disadvantage. To verify our conjecture that most queries



are indeed for hay, we gathered traces of queries and download
requests using an instrumented Gnutella client. Our tracing tool
crawled the Gnutella network searching for files that match the top
50 query requests seen. After gathering the file names and the num-
ber of available copies of each of these files, the tool turned around
and offered the same files for download to other Gnutella clients. We
then measured the number of download requests seen by the trac-
ing tool for this offered content. Figure 1 shows the distribution of
the download requests versus the number of available replicas. We
notice that most of the requests correspond to files that have a large
number of available replicas.5 For example, half of the requests were
for files with more than 100 replicas, and approximately 80% of the
requests were for files with more than 80 replicas.

In summary, Gnutella-like designs are more robust in the face of
transients and support general search facilities, both important prop-
erties to P2P file sharing. They are less adept than DHTs at finding
needles, but this may not matter since most P2P queries are for hay.
Thus, we conjecture that for mass-market file-sharing applications,
improving the scalability of unstructured P2P systems, rather than
turning to DHT-based systems, may be the better approach.

3. GIA DESIGN
Gnutella-like systems have one basic problem: when faced with

a high aggregate query rate, nodes quickly become overloaded and
the system ceases to function satisfactorily. Moreover, this prob-
lem gets worse as the size of the system increases. Our first goal
in designing Gia is to create a Gnutella-like P2P system that can
handle much higher aggregate query rates. Our second goal is to
have Gia continue to function well with increasing system sizes. To
achieve this scalability, Gia strives to avoid overloading any of the
nodes by explicitly accounting for their capacity constraints. In an
earlier workshop paper [13], we presented a preliminary proposal
for incorporating capacity awareness into Gnutella. In our current
work, we refine those ideas and present a thorough design, detailed
algorithms, and a prototype implementation of the new system. We
begin with an overview of the reasoning behind our system design
and then provide a detailed discussion of the various components
and protocols.

3.1 Design Rationale
The Gnutella protocol [6] uses a flooding-based search method to

find files within its P2P network. To locate a file, a node queries each
of its neighbors, which in turn propagate the query to their neigh-
bors, and so on until the query reaches all of the clients within a
certain radius from the original querier. Although this approach can
locate files even if they are replicated at an extremely small number
of nodes, it has obvious scaling problems. To address this issue, Lv
et al. [12] proposed replacing flooding with random walks. Random
walks are a well-known technique in which a query message is for-
warded to a randomly chosen neighbor at each step until sufficient
responses to the query are found. Although they make better uti-
lization of the P2P network than flooding, they have two associated
problems:

1. A random walk is essentially a blind search in that at each
step a query is forwarded to a random node without taking
into account any indication of how likely it is that the node
will have responses for the query.

5Note that since the tracing tool only captures the download requests
that came directly to it, we miss all of the requests that went to the
other nodes that also had copies of the same file. Thus our numbers
can only be a lower bound on how popular well-replicated content
is.

2. If a random walker query arrives at a node that is already over-
loaded with traffic, it may get queued for a long time before it
is handled.

Adamic et al. [1] addressed the first problem by recommend-
ing that instead of using purely random walks, the search protocol
should bias its walks toward high-degree nodes. The intuition be-
hind this is that if we arrange for neighbors to be aware of each
other’s shared files, high-degree nodes will have (pointers to) a large
number of files and hence will be more likely to have an answer that
matches the query. However, this approach ignores the problem of
overloaded nodes. In fact, by always biasing the random walk to-
wards high-degree nodes, it can exacerbate the problem if the high-
degree node does not have the capacity to handle a large number of
queries.

The design of Gia, on the other hand, explicitly takes into ac-
count the capacity constraints associated with each node in the P2P
network. The capacity of a node depends upon a number of fac-
tors including its processing power, disk latencies, and access band-
width. It is well-documented that nodes in networks like Gnutella
exhibit significant heterogeneity in terms of their capacity to handle
queries [22]. Yet, none of the prior work on scaling Gnutella-like
systems leverages this heterogeneity. In the design of Gia, we ex-
plicitly accommodate (and even exploit) heterogeneity to achieve
better scaling. The four key components of our design are summa-
rized below:

• A dynamic topology adaptation protocol that puts most nodes
within short reach of high capacity nodes. The adaptation
protocol ensures that the well-connected (i.e., high-degree)
nodes, which receive a large proportion of the queries, actu-
ally have the capacity to handle those queries.

• An active flow control scheme to avoid overloaded hot-spots.
The flow control protocol explicitly acknowledges the exis-
tence of heterogeneity and adapts to it by assigning flow-control
tokens to nodes based on available capacity.

• One-hop replication of pointers to content. All nodes main-
tain pointers to the content offered by their immediate neigh-
bors. Since the topology adaptation algorithm ensures a con-
gruence between high capacity nodes and high degree nodes,
the one-hop replication guarantees that high capacity nodes
are capable of providing answers to a greater number of queries.

• A search protocol based on biased random walks that directs
queries towards high-capacity nodes, which are typically best
able to answer the queries.

3.2 Detailed Design
The framework for the Gia client and protocols is modeled after

the current Gnutella protocol [6]. Clients connect to each other using
a three-way handshake protocol. All messages exchanged by clients
are tagged at their origin with a globally unique identifier or GUID,
which is a randomly generated sequence of 16 bytes. The GUID is
used to track the progress of a message through the Gia network and
to route responses back to the originating client.

We extend the Gnutella protocol to take into account client capac-
ity and network heterogeneity. For this discussion, we assume that
client capacity is a quantity that represents the number of queries
that the client can handle per second. In practice, the capacity will
have to be determined as a function of a client’s access bandwidth,
processing power, disk speed, etc. We discuss the four protocol com-
ponents in detail below.



Let Ci represent capacity of node i

if num nbrsX + 1 ≤ max nbrs then {we have room}
ACCEPT Y ; return

{we need to drop a neighbor}
subset← i ∀ i ∈ nbrsX such that Ci ≤ CY

if no such neighbors exist then
REJECT Y ; return

candidate Z ←highest-degree neighbor from subset

if (CY > max(Ci ∀ i ∈ nbrsX) ) {Y has higher capacity}
or (num nbrsZ > num nbrsY + H) {Y has fewer nbrs}
then

DROP Z; ACCEPT Y

else
REJECT Y

Algorithm 1: pick neighbor to drop(X,Y ):
When node X tries to add Y as a new neighbor, determine whether
there is room for Y . If not, pick one of X’s existing neighbors
to drop and replace it with Y . (In the algorithm, H represents a
hysteresis factor.)

3.2.1 Topology Adaptation
The topology adaptation algorithm is the core component that

connects the Gia client to the rest of the network. In this section,
we provide an overview of the adaptation process, while leaving the
details of some of the specific mechanisms for discussion later in
Section 5. When a node starts up, it uses bootstrapping mechanisms
similar to those in Gnutella to locate other Gia nodes. Each Gia
client maintains a host cache consisting of a list of other Gia nodes
(their IP address, port number, and capacity). The host cache is pop-
ulated throughout the lifetime of the client using a variety of ren-
dezvous mechanisms including contacting well-known web-based
host caches [5] and exchanging host information with neighbors
through PING-PONG messages [6]. Entries in the host cache are
marked as dead if connections to those hosts fail. Dead entries are
periodically aged out.

The goal of the topology adaptation algorithm is to ensure that
high capacity nodes are indeed the ones with high degree and that
low capacity nodes are within short reach of higher capacity ones.
To achieve this goal, each node independently computes a level of
satisfaction (S). This is a quantity between 0 and 1 that represents
how satisfied a node is with its current set of neighbors. A value
of S = 0 means that the node is quite dissatisfied, while S = 1
suggests that the node is fully satisfied. As long as a node is not fully
satisfied, the topology adaptation continues to search for appropriate
neighbors to improve the satisfaction level. Thus, when a node starts
up and has fewer than some pre-configured minimum number of
neighbors, it is in a dissatisfied state (S = 0). As it gathers more
neighbors, its satisfaction level rises, until it decides that its current
set of neighbors is sufficient to satisfy its capacity, at which point the
topology adaptation becomes quiescent. In Section 5.2, we describe
the details of the algorithm used to compute the satisfaction level.

To add a new neighbor, a node (say X) randomly selects a small
number of candidate entries from those in its host cache that are not
marked dead and are not already neighbors. From these randomly
chosen entries, X selects the node with maximum capacity greater
than its own capacity. If no such candidate entry exists, it selects
one at random. Node X then initiates a three-way handshake to the
selected neighbor, say Y .

During the handshake, each node makes a decision whether or not
to accept the other node as a new neighbor based upon the capaci-
ties and degrees of its existing neighbors and the new node. In order

to accept the new node, we may need to drop an existing neighbor.
Algorithm 1 shows the steps involved in making this determination.
The algorithm works as follows. If, upon accepting the new con-
nection, the total number of neighbors would still be within a pre-
configured bound max nbrs, then the connection is automatically
accepted. Otherwise, the node must see if it can find an appropriate
existing neighbor to drop and replace with the new connection.

X always favors Y and drops an existing neighbor if Y has higher
capacity than all of X’s current neighbors. Otherwise, it decides
whether to retain Y or not as follows. From all of X’s neighbors that
have capacity less than or equal to that of Y , we choose the neigh-
bor Z that has the highest degree. This neighbor has the least to
lose if X drops it in favor of Y . The neighbor will be dropped only
if the new node Y has fewer neighbors than Z. This ensures that
we do not drop already poorly-connected neighbors (which could
get disconnected) in favor of well-connected ones.6 The topology
adaptation algorithm thus tries to ensure that the adaptation process
makes forward progress toward a stable state. Results from experi-
ments measuring the topology adaptation process are discussed later
in Section 5.4.

3.2.2 Flow control
To avoid creating hot-spots or overloading any one node, Gia uses

an active flow control scheme in which a sender is allowed to direct
queries to a neighbor only if that neighbor has notified the sender
that it is willing to accept queries from the sender. This is in contrast
to most proposed Gnutella flow-control mechanisms [16], which are
reactive in nature: receivers drop packets when they start to become
overloaded; senders can infer the likelihood that a neighbor will drop
packets based on responses that they receive from the neighbor, but
there is no explicit feedback mechanism. These technique may be
acceptable when queries are flooded across the network, because
even if a node drops a query, other copies of the query will prop-
agate through the network. However, Gia uses random walks (to
address scaling problems with flooding) to forward a single copy of
each query. Hence, arbitrarily dropping queries is not an appropriate
solution.

To provide better flow control, each Gia client periodically as-
signs flow-control tokens to its neighbors. Each token represents a
single query that the node is willing to accept. Thus, a node can
send a query to a neighbor only if it has received a token from that
neighbor, thus avoiding overloaded neighbors. In the aggregate, a
node allocates tokens at the rate at which it can process queries. If
it receives queries faster than it can forward them (either because it
is overloaded or because it has not received enough tokens from its
neighbors), then it starts to queue up the excess queries. If this queue
gets too long, it tries to reduce the inflow of queries by lowering its
token allocation rate.

To provide an incentive for high-capacity nodes to advertise their
true capacity, Gia clients assign tokens in proportion to the neigh-
bors’ capacities, rather than distributing them evenly between all
neighbors. Thus, a node that advertises high capacity to handle in-
coming queries is in turn assigned more tokens for its own outgoing
queries. We use a token assignment algorithm based on Start-time
Fair Queuing (SFQ) [9]. Each neighbor is assigned a fair-queuing
weight equal to its capacity. Neighbors that are not using any of their
assigned tokens are marked as inactive and the left-over capacity
is automatically redistributed proportionally between the remaining
neighbors. As neighbors join and leave, the SFQ algorithm recon-

6To avoid having X flip back and forth between Y and Z, we add a
level of hysteresis: we drop Z and add Y only if Y has at least H
fewer neighbors than Z, where H represents the level of hysteresis.
In our simulations and implementation, we set the value of H to 5.



figures its token allocation accordingly.7 Token assignment notifica-
tions can be sent to neighbors either as separate control messages or
by piggy-backing on other messages.

3.2.3 One-hop Replication
To improve the efficiency of the search process, each Gia node

actively maintains an index of the content of each of its neighbors.
These indices are exchanged when neighbors establish connections
to each other, and periodically updated with any incremental changes.
Thus, when a node receives a query, it can respond not only with
matches from its own content, but also provide matches from the
content offered by all of its neighbors. When a neighbor is lost,
either because it leaves the system, or due to topology adaptation,
the index information for that neighbor gets flushed. This ensures
that all index information remains mostly up-to-date and consistent
throughout the lifetime of the node.

3.2.4 Search Protocol
The combination of topology adaptation (whereby high capac-

ity nodes have more neighbors) and one-hop replication (whereby
nodes keep an index of their neighbors’ shared files) ensures that
high capacity nodes can typically provide useful responses for a
large number of queries. Hence, the Gia search protocol uses a
biased random walk: rather than forwarding incoming queries to
randomly chosen neighbors, a Gia node selects the highest capacity
neighbor for which it has flow-control tokens and sends the query to
that neighbor. If it has no tokens from any neighbors, it queues the
query until new tokens arrive.

We use TTLs to bound the duration of the biased random walks
and book-keeping techniques to avoid redundant paths. With book-
keeping, each query is assigned a unique GUID by its originator
node. A node remembers the neighbors to which it has already for-
warded queries for a given GUID. If a query with the same GUID
arrives back at the node, it is forwarded to a different neighbor. This
reduces the likelihood that a query traverses the same path twice. To
ensure forward progress, if a node has already sent the query to all
of its neighbors, it flushes the book-keeping state and starts re-using
neighbors.

Each query has a MAX RESPONSES parameter, the maximum
number of matching answers that the query should search for. In ad-
dition to the TTL, query duration is bounded by MAX RESPONSES.
Every time a node finds a matching response for a query, it decre-
ments the MAX RESPONSES in the query. Once MAX RESPONSES
hits zero, the query is discarded. Query responses are forwarded
back to the originator along the reverse-path associated with the
query. If the reverse-path is lost due to topology adaptation or if
queries or responses are dropped because of node failure, we rely
on recovery mechanisms described later in Section 5.3 to handle the
loss.

Finally, since a node can generate a response either for its own
files or for the files of one of its neighbors, we append to the for-
warded query the addresses of the nodes that own those files. This
ensures that the query does not produce multiple redundant responses
for the same instance of a file; a response is generated only if the
node that owns the matching file is not already listed in the query
message.

4. SIMULATIONS
In this section, we use simulations to evaluate Gia and compare

its performance to two other unstructured P2P systems. Thus our
simulations refer to the following four models:
7Details of the SFQ algorithm for proportional allocation can be
found in [9].

Capacity level Percentage of nodes
1x 20%

10x 45%
100x 30%
1000x 4.9%

10000x 0.1%

Table 1: Gnutella-like node capacity distributions.

• FLOOD: Search using TTL-scoped flooding over random topolo-
gies. This represents the Gnutella model.

• RWRT: Search using random walks over random topologies.
This represents the recommended search technique suggested
by Lv et al. [12] for avoiding the scalability problems with
flooding.

• SUPER: Search using supernode mechanisms [7, 24]. In this
approach, we classify nodes as supernodes and non-supernodes.
Queries are flooded only between supernodes.

• GIA: Search using the Gia protocol suite including topology
adaptation, active flow control, one-hop replication, and bi-
ased random walks.

We first describe our simulation model and the metrics used for
evaluating the performance of our algorithms. Then we report the
results from a range of simulations. Our experiments focus on the
aggregate system behavior in terms of its capacity to handle queries
under a variety of conditions. We show how the individual com-
ponents of our system (topology adaptation, flow control, one-hop
replication, and searches based on biased random walks) and the
synergies between them affect the total system capacity. Due to
space limitations, we do not present detailed results evaluating trade-
offs within each design component.

4.1 System Model
To capture the effect of query load on the system, the Gia simu-

lator imposes capacity constraints on each of the nodes within the
system. We model each node i as possessing a capacity Ci, which
represents the number of messages (such as queries and add/drop
requests for topology adaptation) that it can process per unit time. If
a node receives queries from its neighbors at a rate higher than its
capacity Ci (as can happen in the absence of flow control), then the
excess queries are modeled as being queued in connection buffers
until the receiving node can read the queries from those buffers.

For most of our simulations, we assign capacities to nodes based
on a distribution that is derived from the measured bandwidth distri-
butions for Gnutella as reported by Saroiu et al. [22]. Our capacity
distribution has five levels of capacity, each separated by an order
of magnitude as shown in Table 1. As described in [22], this dis-
tribution reflects the reality that a fair fraction of Gnutella clients
have dial-up connections to the Internet, the majority are connected
via cable-modem or DSL and a small number of participants have
high speed connections. For the SUPER experiments, nodes with
capacities 1000x and 10000x are designated as supernodes.

In addition to its capacity, each node i is assigned a query gener-
ation rate qi, which is the number of queries that node i generates
per unit time. For our experiments, we assume that all nodes gen-
erate queries at the same rate (bounded, of course, by their capaci-
ties). When queries need to be buffered, they are held in queues. We
model all incoming and outgoing queues as having infinite length.
We realize that, in practice, queues are not infinite, but we make this
assumption since the effect of dropping a query and adding it to an
arbitrarily long queue is essentially the same.
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Figure 2: Success rate, hop-count and delay under increasing query load for a 10,000 node Gia network.

Queries are modeled as searching for specific keywords. Each
keyword maps on to a set of files. Files are randomly replicated on
nodes. All files associated with a specific keyword are potential an-
swers for a query with that keyword. We use the term replication
factor to refer to the fraction of nodes at which answers to queries
reside. Thus, performing a query for a keyword that has a replication
factor of 1% implies that an answer to this query can be found at 1%
of the nodes in the system. In a deployed system, real search traf-
fic will include many different queries covering a range of replica-
tion factors simultaneously. However, each search process proceeds
largely independently (aside from delays within queues and the ac-
tions of flow control). Hence, rather than having to pick a specific
distribution of queries, each looking for keywords with their own
replication factors, we focus on a stream of queries all with a partic-
ular replication factor and study how our results vary as we change
the replication factor.

We begin our simulations with a randomly connected topology.8

The GIA simulations use topology adaptation to reconfigure this ini-
tial topology. The algorithms use two pre-configured parameters:
min nbrs and max nbrs. For all of our experiments, we use min -
nbrs = 3. We set max nbrs to 128. However, there is an additional
constraint on max nbrs. To avoid mid- or low-capacity nodes from
gathering so many neighbors that their capacity is too finely divided,
we require that C

num nbrs
≥ some min alloc, where min alloc

represents the finest level of granularity into which we are willing to
split a node’s capacity. With this additional constraint, we note that
for each node, max nbrs = min(max nbrs, b C

min alloc
c). After

some preliminary simulations that tested the performance of the GIA
topology adaptation for different values of min alloc, we settled on
min alloc = 4. All control traffic generated by the topology adap-
tation and other components is modeled as consuming resources:
one unit of capacity per message. Thus, the simulator indirectly
captures the impact of control traffic on the overall performance of
the system.

For RWRT and FLOOD, there is no topology adaptation; we use
a random graph. We know that Gnutella networks, in fact, exhibit
properties similar to power-law graphs [20]. However, there is no
assurance that high-degree nodes in the skewed Gnutella distribu-
tion are also high-capacity nodes. In fact, in the absence of an ex-
plicit congruence of high capacity with high degree, a random walk
will cause the high-degree nodes to get overloaded. Comparing a
random walk on such a topology to GIA would unfairly bias the re-
sults against the random walk. Hence, for RWRT, we choose to use
a purely random topology with uniform degree distributions, which
mitigates this problem. The RWRT performance on such a uniformly
random graph is independent of the degree of the individual nodes;

8For the SUPER experiments, we use a topology where supernodes
set up random connections among themselves. In addition, all non-
supernodes connect to one supernode at random.

all nodes will be visited with the same probability. On the other
hand, the performance of FLOOD does depend on degree and in fact
worsens with higher degree. For our experiments, we thus chose
uniformly random graphs with an average degree of eight. This
choice is ad hoc, but reflects a decision to avoid unnecessarily bi-
asing against RWRT and FLOOD.

On average, the diameter of our random graphs is 7. Thus, for
FLOOD and SUPER, we set the TTL for queries to 10 to ensure that
queries do not get artificially limited. For RWRT and GIA, the TTL
is set to a larger value (1024), but in this case setting the right TTL
value is not as crucial because the random walks terminate when
they find the required number of responses.

Although the simulator models the behavior of the various pro-
tocols discussed in Section 3, it does not capture individual packet-
level behavior nor does it account for any of the vagaries in network
behavior caused by background traffic. We do this because our point
is not to quantify the absolute performance of the algorithm in real-
world terms, but to evaluate the relative performance of the various
design choices. In Section 5.4, we present some preliminary results
that report on our experiences with implementing and deploying Gia
in the wide-area Internet.

4.2 Performance Metrics
To measure the effect of load on the system, we looked at three as-

pects of the system’s performance as a function of the offered load:
the success rate measured as the fraction of queries issued that suc-
cessfully locate the desired files9, the hop-count measured as the
number of hops required to locate the requested files, and the delay
measured as the time taken by a query from start to finish. Fig-
ure 2 shows the success rate, hop-count and delay under increasing
query load for a 10,000 node network running the Gia system. For
these graphs, as in the remainder of our simulations, when we men-
tion a query load of say 0.1, we mean that every node in the system
issues 0.1 queries per unit time (bounded by the node’s capacity,
of course). As each of the graphs in the figure shows, when the
query load increases, we notice a sharp “knee” in the curves beyond
which the success rate drops sharply and delays increase rapidly.
The hop-count holds steady until the knee-point and then decreases.
The reason for this decrease is that hop-count is measured only for
successful queries; under increasing load, successful queries tend to
be those where the requested file is located within a few hops from
the originator of the query. These graphs depict the existence of a
knee in the GIA model; our simulations with RWRT, FLOOD, and
SUPER over a range of replication factors revealed the same kind of
behavior, although at different query loads.

9A query is deemed unsuccessful if at the end of the simulation it
has generated no responses and is stuck in queues within overloaded
nodes.
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Figure 3: Comparison of collapse point for the different algo-
rithms at varying replication rates and different system sizes.

Ideally, we want a system that achieves a high success rate while
maintaining a low hop-count and delay. To do so, the system must
operate before the knee shown in the graphs above. Consequently,
we define the following metrics for use in our evaluation:

Collapse Point (CP): the per node query rate at the knee, which we
define as the point beyond which the success rate drops below
90%. This metric reflects total system capacity.

Hop-count before collapse (CP-HC): the average hop-count prior
to collapse.

We do not retain delay as a metric since the effect of increasing
delay is effectively captured by the collapse point.

4.3 Performance Comparison
We compare the behavior of GIA, RWRT, SUPER and FLOOD

under varying replication factors and different system sizes up to
10,000 nodes. We measured the CP and CP-HC under increasing
replication factors. In Figures 3 and 4, we plot the results for systems
with 5,000 and 10,000 nodes. Experiments with additional system
sizes yielded results consistent with those presented here; we omit
them from the graphs for clarity. For a 10,000 node system we sim-
ulate down to 0.01% replication since that corresponds to a single
matching answer in the entire system for any query. Likewise, for
5,000 nodes we simulate down to 0.05% replication. We believe that
a replication factor of 0.01% where only one in 10,000 nodes holds
the answer to a query represents a fairly pessimistic test scenario.
Each query in these experiments runs until it finds one matching an-
swer. This represents the case where the query originator sets the
MAX RESPONSES parameter (see Section 3.2.4) in the query to 1.
In reality, most users expect a query to return multiple answers; we
will look at that scenario later. For GIA and RWRT, we measure
the average hop-count of all of the queries. Since for SUPER and
FLOOD a query gets replicated at each hop, it is hard to define a
consistent hop-count for the entire query; hence, we measure the
hop-count as the number of hops taken to find the first answer.

Recall that our first goal in designing Gia was to enable it to han-
dle a much higher aggregate query rate than Gnutella. The most
obvious, and important, observation from Figures 3 and 4 is that the
aggregate system capacity (as defined by the collapse point) is 3 to 5
orders of magnitude higher than either FLOOD or RWRT. Even when
compared to the supernode approach, Gia does better especially at
higher replication rates. This is not surprising since the flooding
techniques used within supernodes limit their scalability. Thus, our
goal of improving system capacity with Gia is clearly achieved. Our
second goal was that Gia retain this ability to handle high aggre-
gate query rates for systems of arbitrary sizes. As can be observed
in the graphs, this goal is also satisfied. GIA’s (and RWRT’s) scal-
ing behavior is determined by the replication factor. That is, at a
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Figure 4: Hop-count before collapse.

fixed replication factor, the CP and CP-HC are largely unaffected
by system size. This is to be expected since the replication factor
is the percentage of nodes at which answers are located. Thus, the
performance figures we show here apply to arbitrarily large system
sizes.

There are several other performance results of note.

• At higher replication factors, RWRT performs better than FLOOD
by approximately two orders of magnitude but is comparable
to FLOOD at lower replication rates. This follows from the
fact that at low replication rates, to find a matching answer
RWRT may have to visit all of the nodes in the system just
like FLOOD.

• GIA achieves extremely low hop-counts at higher replication
because, in such cases, high capacity nodes are quite likely
to hold answers and these are quickly discovered by biased
walks. However, at low replication some queries may have to
travel far beyond the high capacity nodes resulting in higher
hop-counts. FLOOD and SUPER achieve consistently low
hop-counts (the number of hops to find the first matching an-
swer), while the hop-count for RWRT is inversely propor-
tional to the replication factor, since RWRT essentially amounts
to random probing.

• The performance of FLOOD degrades with increasing system
size. This is because, in FLOOD, each query is propagated to
every other node in the system. With increasing number of
nodes, there are more total number of queries in the system,
and hence a greater query load arriving at each node. This
causes the collapse point to fall as the system size increases.
We observed similar effects with SUPER as seen from Fig-
ure 3.

These experiments clearly demonstrate GIA’s scalability relative
to RWRT, SUPER and FLOOD. However, these experiments are lim-
ited to queries where the search terminates after finding a single
matching answer. In reality, most users expect a query to return
multiple answers. We now look at (a) how our results generalize be-
yond this single case, and (b) how the different design components
contribute to this enormous performance boost for GIA.

4.4 Multiple Search Responses
In this section we look at how the collapse points (and the as-

sociated hop-counts) change for our different system models based
upon the desired number of responses for a query. Recall from Sec-
tion 3.2.4 that a query includes a MAX RESPONSES parameter that
indicates how many responses should be sent back to the originator
of the query before ending the query. The MAX RESPONSES pa-
rameter is useful only in the context of GIA and RWRT. For FLOOD
and SUPER, queries get flooded through the network, and so MAX -
RESPONSES has no effect on their behavior.



Algorithm Collapse Point Hop-count

GIA 7 15.0
GIA – OHR 0.004 8570
GIA – BIAS 6 24.0

GIA – TADAPT 0.2 133.7
GIA – FLWCTL 2 15.1

Algorithm Collapse Point Hop-count

RWRT 0.0005 978
RWRT + OHR 0.005 134
RWRT + BIAS 0.0015 997

RWRT + TADAPT 0.001 1129
RWRT + FLWCTL 0.0006 957

Table 4: Factor analysis for GIA and RWRT with 10,000 modes and 0.1% replication. We measure GIA with each of the following
components removed, and RWRT with each of those components added: one-hop replication (OHR), biased random walks (BIAS),
topology adaptation (TADAPT), and flow-control (FLWCTL)

Repl. MAX GIA RWRT FLOOD SUPER
factor RESP. CP (CP-HC) CP (CP-HC) CP CP

1% 1 350 0.005 0.00025 0.015
(1.4) (98.7)

1% 10 8 0.0004 0.00025 0.015
(12.5) (1020)

1% 20 2.5 0.00015 0.00025 0.015
(28) (2157)

Table 2: CP decreases with increasing numbers of requested
answers (MAX RESPONSES). The corresponding hop-counts be-
fore collapse for each case are shown in parentheses. Since hop-
counts are ambiguous for FLOOD and SUPER when there are
multiple responses, we ignore CP-HC for those cases.

Repl. MAX GIA RWRT FLOOD SUPER
factor RESPONSES CP CP CP CP
1% 10 8 0.0004 0.00025 0.015

0.1% 1 7 0.0005 0.00025 0.015

1% 20 2.5 0.00015 0.00025 0.015
0.05% 1 2.5 0.00015 0.00025 0.015

Table 3: A search for k responses at r% replication is equivalent
to one for a single answer at r

k
% replication.

Table 2 shows the CP for all four system models for a 10,000 node
system at a replication factor of 1%. For RWRT and GIA, higher
values of MAX RESPONSES imply that the query needs to search
through the network longer before it ends. This results in a higher
effective hop-count for each query and as a result causes each query
to utilize more of the available system capacity. As shown by the
CP values in the table, this effectively reduces the overall system
capacity. As expected, varying MAX RESPONSES has no effect on
the SUPER and FLOOD models.

As seen earlier in Figure 3, the collapse point also depends on the
replication factor. When files are replicated at fewer nodes, queries
must on average visit more nodes to find them. As a result, the col-
lapse point drops with decreasing replication factors. In fact, we find
that the performance of a query for k MAX RESPONSES at a repli-
cation factor of r is equivalent to that of a query for a single response
at a correspondingly lower replication factor of r

k
. This is depicted

in Table 3. With all four system models, searching for 10 answers
at a replication factor of 1.0% yields a CP almost identical to that
obtained by searching for a single answer at a replication factor of
0.1%. Likewise, searching for 20 answers at 1% replication yields
the same CP as searching for a single answer at 0.05% replication.

Given this result, we model the rest of our GIA and RWRT sim-
ulations for simplicity with searches that terminate after finding the
first answer for their queries. This does not change the nature of our
results but makes it simpler to analyze the system and is sufficient to
bring out the significant differences between the various designs.

4.5 Factor Analysis
Our results in Section 4.3 indicate that GIA outperforms RWRT,

SUPER and FLOOD by several orders of magnitude in terms of the
query load that it can successfully sustain. We now turn our attention
to looking at how the individual components of GIA (topology adap-
tation, flow control, one-hop replication, and biased random walks)
influence this performance gain. Many researchers have proposed
schemes for improving Gnutella’s scalability that use one or more
of the GIA components. What distinguishes GIA from most other
schemes is the combination of all of the components into a com-
prehensive system design that, unlike previous work, adapts each
component to be “capacity-sensitive”.

In this section, we show that it is not any single component, but in
fact, the combination of them all that provides GIA this large perfor-
mance advantage. We show that each of GIA’s design components
is vital to its performance, and yet, the addition of any single GIA
component to RWRT does not significantly close the performance
gap between GIA and RWRT. We do not consider FLOOD since the
primary design leap from FLOOD to GIA is in the transition from
the use of floods to the use of random walks, the effect of which is
already captured by the basic RWRT. Similarly, SUPER is just one
step toward the GIA design that includes some amount of one-hop
replication and an ad-hoc awareness of node heterogeneity. Here,
we instead examine the performance of GIA upon removing each of
its four design components one at a time and compare it to the be-
havior of RWRT if we were to add those design components to it one
at a time.

Table 4 shows the result of this factor analysis for 10,000 nodes
at a replication of 0.1%. At first glance, one may conclude that
GIA gets most of its performance gain from the one-hop replication,
since removing one-hop replication from GIA severely impacts its
performance. However, adding one-hop replication to RWRT only
improves the CP by a single order of magnitude while GIA as a whole
offers a CP that is over four orders of magnitude greater than with
RWRT. It is the combination of topology adaptation, biased-random
walks and flow-control in addition to the one-hop replication that
gives GIA its enormous performance gain over RWRT.

Biasing the random walk appears to be of little consequence to
GIA’s performance. This is because at high query loads (i.e., close to
CP), the flow-control component serves to divert load towards any
available capacity (which is typically in the high capacity nodes),
and thus functions akin to the biased walks. However, under lower
query loads, when all nodes are lightly loaded, it is the biased walk
that helps to direct queries rapidly to high capacity nodes.

4.6 Effect of Heterogeneity
Since GIA is explicitly designed to be sensitive to node capaci-

ties, we now examine the impact of heterogeneity on system perfor-
mance. Table 5 compares the performance of GIA and RWRT with
node capacities drawn from the Gnutella-like capacity distribution
to the case where all nodes have identical capacities equal to the av-



Algorithm Collapse Point Hop-count

GIA w/ Gnutella 7 15.0
capacity distribution

GIA w/ uniform 2 46.0
capacity distribution

RWRT w/ Gnutella 0.0005 978
capacity distribution
RWRT w/ uniform 0.0525 987

capacity distribution

Table 5: Impact of heterogeneity; 10,000 nodes, 0.1% replication

erage node capacity from the Gnutella distribution. The CP in GIA
improves when nodes have heterogeneous capacities. In contrast, we
see that RWRT is not tolerant of heterogeneity and the CP drops by
over two orders of magnitude relative to the uniform capacity case.
While the CP-HC remains the same for RWRT in both cases (as one
would expect), the hop-count for GIA drops since the biased random
walks start directing queries towards the high-capacity nodes.

4.7 Robustness
Our results so far have shown that Gia performs significantly bet-

ter than previous unstructured P2P file sharing systems. In this sec-
tion, we show that Gia can sustain this performance in the face of
node failures.

Node failure model. We model node failures by assigning each
node an up-time picked uniformly at random from [0, MAXLIFE-
TIME] where MAXLIFETIME is a simulation parameter. When a
node’s up-time expires, the node resets. That is, it disconnects from
its neighbors, shuts down, and immediately rejoins the system by
connecting initially to a random number of neighbors. This is simi-
lar to modeling existing nodes shutting down and leaving the system
while other new nodes are simultaneously joining the system. When
a node shuts down, any queries it has queued locally are dropped and
resumed by the nodes that had originally generated them.10 Finally,
as nodes join and leave the system, the topology adaptation over-
head is captured by the fact that each node’s adaptation operations
consume capacity within the node.

Figures 5 and 6 plot the CP and CP-HC, respectively, for a 10,000
node Gia system under increasing MAXLIFETIME. We see that, rel-
ative to the static case, the CP drops by approximately an order of
magnitude as the MAXLIFETIME is reduced to 10.0 time units, while
the hop-count rises by approximately a factor of five. Note that at
a MAXLIFETIME of 10 time units, approximately 20% of the nodes
reset in every time unit.11 Even under this extremely stressful test,
GIA’s performance drops only by less than one order of magnitude.
This is still an improvement of 2-4 orders of magnitude over RWRT,
SUPER and FLOOD under static conditions.

4.8 File Downloads
The results presented above indicate that Gia can support signif-

icantly higher query loads than previously proposed approaches for
distributed file searching and can maintain this performance advan-
tage even in the face of high node churn. Gia’s dramatic perfor-
mance improvement stems from its unique combination of design
components and its ability to funnel work to high capacity nodes in
the system.

Our results thus lead us to conclude that search in decentralized

10The exact mechanisms for implementing query restart in a real sys-
tem are discussed in Section 5.3.

11Compare this to typical Gnutella node life-times of 60 min-
utes [22].
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P2P systems need no longer pose insurmountable scaling problems.
If so, we conjecture that the next bottleneck limiting scalability is
likely to be the file download process. This will be particularly true
if, as recent measurement studies indicate, file sizes continue to in-
crease [21]. We believe that Gia’s ability to harness capacity in a
manner that is sensitive to the constraints of individual nodes can
have a beneficial impact on downloads as well. Even as is, Gia aids
downloads to the extent that users are typically directed to a high-
capacity copy of a file if one exists. However this advantage is un-
likely to be significant unless high capacity nodes also store more
files. Thus, for Gia to be able to assist in file downloads, we would
have to extend the one-hop replication used in Gia to allow the ac-
tive replication of the files themselves (rather than simply pointers
to files). A simple form of active replication would be for over-
loaded low capacity nodes to replicate popular files at the higher
capacity nodes in their one-hop neighborhood. This can be done in
an on-demand fashion where the high-capacity nodes replicate con-
tent only when they receive a query and a corresponding download
request for that content.

To gauge the extent to which such active replication might be use-
ful, we did a simple calculation of the total capacity of all the nodes
at which a given file is available with and without this active repli-
cation scheme. The resultant numbers are listed in Table 6. We see
that active replication increases the total capacity of nodes serving a
given file by a factor of between 38 to 50. This appears promising,
although one would need significant more analysis and simulations
to validate the usefulness of this approach.

5. IMPLEMENTATION AND PRACTICAL
DETAILS

We implemented a prototype Gia client that incorporates all of the
algorithms presented in Section 3. The client, which was written in



% Replication Gia Gia with active
replication

0.1% 965 48,682
0.5% 4,716 213,922
1.0% 9,218 352,816

Table 6: Total capacity of all the nodes offering a given file with
and without active replication for a 10,000 node GIA network

Let Ci represent capacity of node i

if num nbrsX < min nbrs then
return 0.0

total←0.0
for all N ∈ neighbors(X) do

total←total + CN

num nbrsN

S← total

CX

if S > 1.0 or num nbrsX ≥ max nbrs then
S←1.0

return S

Algorithm 2: satisfaction level(X)
Computes how “satisfied” node X is. Returns value between 0.0 and
1.0. 1.0⇒ node X is fully satisfied, while 0.0 ⇒ it is completely
dissatisfied. Values in between represent the extent of satisfaction.

C++, provides a command-line-based file sharing interface. In this
section, we discuss some of the systems issues that our prototype
implementation addresses.

5.1 Capacity settings
In our discussion so far, we have assumed that a node’s capacity

is a quantity that represents the number of queries that the node can
handle per second. For low-bandwidth clients, query processing ca-
pacity is limited by the client’s access bandwidth. On the other hand,
for nodes with high-speed access connections, other issues such as
the speed of the CPU, disk latencies, etc. may affect the capacity.
Our prototype implementation ignores the effects of CPU speed and
disk latency on query capacity. We assume that capacity is a di-
rect function of the access bandwidth. A node can either have its
end-user configure its access bandwidth (via a user interface, as is
done in many Gnutella clients), or automatically determine the ac-
cess bandwidth by executing a configuration script that downloads
large chunks of data from well-known sites around the Internet and
measures the bandwidth based upon the average time taken for the
downloads. In addition, the advertised capacity of nodes can be
weighted by how long the node has been in the system. This ensures
that the well-connected high-capacity core of the network is com-
posed of mostly stable nodes. In future implementations, we plan
to experiment with auto-configuration scripts that take into account
other factors in addition to network bandwidth and node life-times
in order to determine client capacity.

5.2 Satisfaction Level: Aggressiveness of Adap-
tation

In Section 3.2.1, we introduced the notion of satisfaction level
for a client. The satisfaction level determines not only whether
or not to perform topology adaptation, but also how frequently it
should be executed. It is a function of pre-configured min nbrs and
max nbrs parameters, the node’s current set of neighbors, their ca-
pacities and their degrees. Neighbors exchange capacity information
when they initially connect to each other, and periodically update
each other with information about their current degree. Algorithm 2
shows the steps involved in calculating the satisfaction level(). It
is essentially a measure of how close the sum of the capacities of all
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Figure 7: Adaptation Interval: A plot of the function I =
T × K−(1−S), where S = satisfaction level(), T = maximum
interval between adaptation iterations, and K = sensitivity to
satisfaction level(). In this figure, we set T = 10seconds and
plot curves for adaptation interval versus satisfaction level for
different values of K.

of a node’s neighbors (normalized by their degrees) is to the node’s
own capacity. Thus a high capacity neighbor with a low degree con-
tributes more to our satisfaction level than another neighbor with the
same capacity but a much higher degree. The intuition behind this is
that a node with capacity C will forward approximately C queries
per unit time at full load and needs enough outgoing capacity from
all of its neighbors to handle that load. In addition to the factors dis-
cussed above, a number of other parameters may be used to compute
the satisfaction level, for example, the load on a node’s neighbors,
network locality, etc. However, for our prototype, we rely only on
node capacity and degree to compute the satisfaction level.

The satisfaction level is key to deciding how often a node should
conduct its local topology adaptation. Nodes with low satisfaction
levels perform topology adaptation more frequently than satisfied
nodes. We use an exponential relationship between the satisfaction
level, S, and the adaptation interval, I: I = T ×K−(1−S), where
T is the maximum interval between adaptation iterations, and K

represents the aggressiveness of the adaptation. After each interval
I , if a node’s satisfaction level is < 1.0, it attempts to add a new
neighbor. Once a node is fully satisfied, it still continues to iterate
through the adaptation process, checking its satisfaction level every
T seconds.

Figure 7 shows how the aggressiveness factor K affects the adap-
tation interval. As expected, when a node is fully satisfied (S =
1.0), the adaptation interval is T irrespective of the value of K. As
the level of satisfaction decreases, the adaptation interval becomes
shorter. For the same satisfaction level, higher values of K produce
shorter intervals and hence cause a more aggressive (i.e., quicker)
response. In Section 5.4 we look at how the rate of topology adap-
tation changes in a real system with different values of K.

5.3 Query resilience
As described earlier, the Gia search protocol uses biased random

walks to forward queries across the network. One of the drawbacks
of using a random walk instead of flooding is that it is much more
susceptible to failures in the network. If a node receives a query and
dies before it can forward the query to a neighbor, that query is lost
forever. This is in contrast to flooding where a query gets replicated
many times, and so even if a node dies without forwarding a query,
there is a good chance that other copies of the query still exist in the
system.

To overcome this problem, we rely on query keep-alive messages.
Query responses sent back to the originator of the query act as im-
plicit keep-alives. In addition, if a query is forwarded enough times
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Figure 8: Progress of topology adaptation for an 83-node topol-
ogy over time. The graph shows changes in the number of neigh-
bors of four nodes (each with different capacities).

without sending any response, we send back an explicit keep-alive
message. This is implemented as a dummy query response message
that has no actual matches. If the query originator does not receive
any responses or keep-alive messages for a while, it can re-issue the
query.

Yet another problem arises from the fact that responses are typ-
ically forwarded along the same path that the query originally ar-
rived from. If one of the nodes in the query path dies or the topology
changes due to adaptation before the responses for the query are sent
back, then those responses will be dropped. When a node dies and
causes responses to be dropped, the query originator will notice it
because of the absence of keep-alive responses. Thus, it can reis-
sue the query if necessary. On the other hand, topology adaptation
is a controlled process and hence we can do better than wait for a
timeout. When a connection is dropped as a result of a topology
adaptation decision, the connection is not closed for some time later.
It stops accepting any more incoming queries, but continues to for-
ward any lingering query responses that need to be sent along that
path.

5.4 Deployment
We deployed our prototype implementation on PlanetLab [17], a

wide-area service deployment testbed spread across North America,
Europe, Asia, and the South Pacific. To test the behavior of our
algorithms in the face of diversity, we artificially introduced hetero-
geneity into the system by explicitly setting the capacities of the in-
dividual nodes. These experiments are by no means meant to stress
all of the various components of the Gia system. We present them
here as a set of early results that demonstrate the viability of this
approach in an actual deployment.

We instantiated Gia clients on 83 of the PlanetLab nodes with a
range of capacities. We allowed the system to run for 15 minutes
before shutting down the clients. Over the course of the experiment,
we tracked changes in the Gia topology to evaluate the behavior of
the topology adaptation process. Figure 8 shows the changes over
time to the neighborhood of each of four different nodes. These
nodes were picked randomly from four capacity classes (1x, 10x,
100x, and 1000x). We notice that initially when the nodes are all
“dissatisfied,” they quickly gather new neighbors. The rate of topol-
ogy adaptation slows down as the satisfaction level of the nodes rises
and the topology eventually stabilizes to its steady state.

In the above experiment, the 1000x capacity node takes approx-
imately 45 seconds to reach its steady state. This time interval is
closely tied to the level of aggressiveness used in the topology adap-
tation. Recall that the adaptation interval I is a function of the
node’s satisfaction level S, and its aggressiveness factor K: I =
T ∗ K−(1−S). In the above experiment, we set T to 10 seconds
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Figure 9: Progress of topology adaptation for a 1000x capac-
ity node over time. The graph shows changes in the number of
neighbors of a node over different runs of the experiment, each
with a different value of K for the adaptation interval function.

and K to 256. We ran other experiments to see how the responsive-
ness of the topology adaptation changes with different values of K.
Figure 9 shows the behavior of a 1000x capacity node for different
values of K. As can be seen from the figure, the topology adaptation
does respond to changes in K, and is less aggressive when we ramp
down the value of K. Thus, this parameter gives us a knob with
which we can trade off the speed at which nodes attain their target
topology to the rate of churn in the overall network.

6. RELATED WORK
We now look at some of the related research in this area. Since the

rise and fall of Napster, many decentralized P2P systems have been
proposed. Gnutella pioneered this approach, and on its footsteps
many other networks such as KaZaA [24] have emerged. Although
the notion of supernodes (nodes with better bandwidth connectivity)
used by KaZaA and the latest versions of Gnutella helps to improve
the performance of the network, it is still limited by the flooding
used for communication across supernodes. Moreover, unlike Gia,
the supernode approach makes just a binary decision about a node’s
capacity (supernode or not) and to our knowledge has no mecha-
nisms to dynamically adapt the supernode-client topologies as the
system evolves.

Numerous researchers have performed extensive measurement stud-
ies of P2P infrastructures. For example, Saroiu et al. [22] studied
the bandwidth, latency, availability, and file sharing patterns of the
nodes in Gnutella and Napster. Their study highlighted the existence
of significant heterogeneity in both systems. Based on this fact, Gia
is designed to accommodate heterogeneity and avoid overloading
the less capable nodes in the network. Other measurement studies
include [23] which shows that there exists extreme heterogeneity in
the traffic volumes generated by hosts within a P2P network and
that only a small fraction of hosts are stable and persist in the P2P
network over long periods of time.

In addition to the work described in Section 1 [1, 12, 16], there
have been other proposals for addressing the scaling problems of
Gnutella. Krishnamurthy et al. [10] proposed a cluster-based archi-
tecture for P2P systems (CAP), which uses a network-aware cluster-
ing technique (based on a central clustering server) to group hosts
into clusters. Each cluster has one or more delegate nodes that act
as directory servers for the objects stored at nodes within the same
cluster. In some sense, the high capacity nodes in Gia provide func-
tionality similar to that of delegate nodes. However, unlike CAP,
Gia adapts its topology to cluster around high-capacity nodes in a
fully decentralized manner and explicitly takes node capacity into
account in all facets of its design.



7. CONCLUSION
We have proposed modifying Gnutella’s algorithms to include

flow control, dynamic topology adaptation, one-hop replication, and
careful attention to node heterogeneity. Our simulations suggest that
these modifications provide three to five orders of magnitude im-
provement in the total capacity of the system while retaining sig-
nificant robustness to failures. The increased capacity is not due to
any single design innovation, but is the result of the synergy of the
combination of all of the modifications. While making search much
more scalable, the design also has potential to improve the system’s
download capacity by more fully distributing the load. Thus, a few
simple changes to Gnutella’s search operations would result in dra-
matic improvements in its scalability.

Why is this result interesting? The most plausible alternative to
Gia is a DHT-based design. As we argued in Section 2, we be-
lieve that DHTs, while more efficient at many tasks, are not well
suited for mass-market file sharing. In particular, their ability to
find needles, i.e., exceedingly rare files, is not needed in a mass-
market file-sharing environment, while their ability to efficiently im-
plement keyword search, which is crucial for this application, is still
unproven.

Another alternative, perhaps too readily dismissed by the research
community, is that of centralized search as in the original Napster.
The reflex response from the research community is that such de-
signs are inherently unscalable, but the examples of Google, Yahoo,
and other large sites tell us that scalability does not pose an insur-
mountable hurdle. In reality, the real barriers to Napster-like designs
are not technical but legal and financial. The demise of Napster is
due to it being used for unauthorized exchanges of copyrighted ma-
terial. Adopting decentralized designs merely to avoid prosecution
for such acts is hardly a noble exercise. From a financial standpoint,
while scaling a centralized search site is technically feasible, it re-
quires a sizable capital investment in the infrastructure. Thus, this
approach can only be adopted when there is an underlying business
model to the application. In contrast, decentralized designs need no
large infrastructure expenditures.

Thus, we view our work not as facilitating copyright avoidance
but as enabling the sharing of files in cases where there is no un-
derlying business model. This is what the web did for publishing—
allowing any author access to a large audience regardless of com-
mercial viability—and we hope to support a similar ability in file
sharing.
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