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1. INTRODUCTION
One of the primary objectives of an adversary is to locate and to destroy
command-and-control centers—that is, sites that send commands and data
to various stations and agents. Hence, one of the crucial ingredients in
almost any network with command centers is to conceal from (and confuse)
the adversary as to which stations issue the commands. This paper shows
how to use standard off-the-shelf cyptographic tools in a novel way in order
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to conceal the command-and-control centers, while still assuring easy
communication between the centers and the recipients.

Specifically, we show efficient solutions that hide the identities of the
sender and the receiver (or both) of the message/directive in a variety of
anonymity requirements (e.g., the receiver knows the identity of the
sender, or the receiver does not know the identity of the sender, etc.). The
proposed solutions are efficient in terms of communication overhead (i.e.,
how much additional information must be transmitted in order to confuse
the adversary), namely O~1! bits per link. The solutions are also efficient
in terms of computation (i.e., how much computation must be performed for
concealment), namely, O~k! pseudorandom sequences are produced to cope
with k-listening internal dynamic adversary. A k-listening internal dy-
namic adversary can monitor all the communication lines between sites
and also monitor (the internal contents of) up to k , n / 2 2 1 sites of
the network. We note that a preprocessing seeds transmission procedure is
executed before the actual transmission starts. The communication over-
head of this preprocessing procedure is amortized in a long sequence
transmission. The preprocessing stage requires O~g z ~kn!2! bits transmis-
sion per a link, where g is a security parameter that is the seed size of the
pseudorandom generator and n is the number of sites in the network.

1.1 The Problem

Modern cryptographic techniques are extremely good at hiding all the
contents of the data by encrypting the messages. However, hiding the
contents of a message does not hide the fact that some message was sent
from or received by a particular site; in other words, it does not protect
against traffic analysis. Thus, if some location (or network node) is sending
and/or receiving a lot of messages and if an adversary can monitor this fact,
then even if an adversary does not understand what the messages are, just
the fact that there are a lot of outgoing (or incoming) messages reveals that
this site (or a network node) is sufficiently active to make it a likely target.
The objective of this paper is to address this problem—that is, how to hide,
in an efficient manner, the site (i.e., command-and-control center) that
transmits (or receives) a lot of data to (or from, respectively) other sites in
the network. This problem has been addressed previously in the literature
[Chaum 1981; 1988; Rackoff and Simon 1993]. We show an amortized
solution for a general graph which, after a fixed preprocessing stage, can
transmit an arbitrary polynomial-size message in an anonymous fashion
using only O~1! bits over each link (of a spanning tree) for every data bit
transmission across a link.

1.2 General Setting and Threat Model

We consider a network of processors/stations where each processor/station
has a list of other stations with which it can communicate (we do not
restrict the means of communication here, i.e., the means could be computer
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networks, radio/satellite connections, etc.) Moreover, we do not restrict the
topology of the network—our general methodology will work for an arbi-
trary network topology. One (or several) of the network nodes is a com-
mand-and-control center that wishes to send commands (i.e., messages) to
other nodes in the network. The question we address in this paper is: How
can we hide the site that is broadcasting (or multicasting) data to (a subset
of) other processors in the network? Before we explore this question
further, we must specify what kind of attack we are defending against.

A simple attack to defend against is that of a restricted adversary (called
an outside adversary) who is allowed to monitor communication channels
only, but is not allowed to infiltrate/monitor the internal contents of any
processor in the network. (Note that such a weak attack is very easy to
defend against: all processors simply transmit either noise or encrypted
messages on each communication channel. If noise is indistinguishable
from encrypted traffic, the pattern of communication is completely hidden.)
Of course, a more realistic adversary (and the one that we consider in this
paper) is the (internal) adversary that can monitor all the communication
between stations and in addition is also trying to infiltrate the internal
nodes of the network.

That is, we consider the adversary that may mount a more sophisticated
attack, one in which he or she manages to compromise the security of one
or several internal nodes of the network, whereby the adversary is now not
only able to monitor the external traffic pattern, but is also able to examine
every message and all the data that passes through (or is stored at) the
infiltrated node. Thus, we define an internal k-listening adversary as one
that can monitor all the communication lines between sites and also
manages to monitor (the internal contents of) up to k sites of the network.
(This, and similar definitions, were considered before in the literature; see,
for example, Rackoff and Simon [1993] and Canetti et al. [1997], and
references therein.) In this paper, however, we restrict out attention to a
listening adversary only, one that monitors traffic but does not try to
sabotage it, similar to that of Franklin et al. [1993] and Kushilevitz et al.
[1994], but with different objectives.

1.3 Comparison with Previous Work

One of the first (if not the first) attempts to consider the problem of hiding
the communication pattern in the network is that of Chaum [1981], in
which the concept of a mix was introduced. A single processor in the
network, called a mix, serves as a relay. A processor P that wants to send a
message m to a processor Q encrypts m using Q ’s public key to obtain m9.
Then P encrypts the pair ~m9, q! using the public key of the mix. The
double encrypted message is sent to the mix. The mix decrypts the message
(to get the pair ~m9, q!) and forwards m9 to q. Further work appears in
Pfitzmann [1985]; Pfitzmann et al. [1991]; and Syverson et al. [1997].

The single mix processor is not secure when this single processor is
cooperating with the (outside) adversary. If the processor that serves as a
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mix is compromised, it can inform the adversary as to where the messages
are forwarded. Hence, as Chaum points out, a sequence of “mixes” must be
employed at the price of additional communication and computation. More-
over, the single mix scheme operates under some statistical assumptions on
the pattern of communication. In case a single message is sent to the mix,
an adversary that monitors the communication channels can observe the
sender and the receiver of the particular message.

An extension of the mix scheme is presented by Rackoff and Simon [1993]
who embed an n-element sorting network of polynomial depth in log(n) that
mixes incoming messages and requires only polynomially many (in log(n))
synchronous steps. In each such step every message is sent from one site of
the network to another site of the network. Thus, the message delay may be
proportional to log(n) times the diameter of the network. The statistical
assumptions on the patterns of communication are somewhat relaxed in
Rackoff and Simon [1993] by the introduction of dummy communication:
every processor sends a message simultaneously. However, the number of
(real and dummy) messages arriving at each destination is available to the
traffic analyzer. This has two drawbacks. The first is the possibility of
revealing the identity of the receiver when all (real) messages are sent to a
particular node, the second is the O~n! messages that a particular node
(the receiver) has to process at a time. Rackoff and Simon [1993] also
presented a scheme that copes with passive internal adversaries by using
randomly chosen committees and multiparty computation (e.g., Goldreich
et al. [1987], Ben-Or et al. [1988], Chaum et al. [1988], and Canetti et al.
[1996; 1997].)

More generally, secure multiparty computation can be used to hide the
communication pattern in the network (see, for example, Goldreich et al.
[1987], Chaum [1988], Waidner and Pfitzmann [1989], Ben-Or et al. [1988],
Chaum et al. [1988], and Canetti et al. [1996; 1997]) via secure function
valuation. However, anonymous communication is a very restricted form of
hiding participants’ input, and hence may benefit from less sophisticated
and more efficient algorithms. Moreover, the solutions above are complexi-
ty-theoretically secure, while there are approaches that may lead to infor-
mation-theoretically secure solutions, such as the one described in Chaum
[1988]. Chaum [1988] suggests using the dc-net approach in order to
achieve anonymous communication. Our approach is similar to the dining
cryptographers solution in Chaum [1988], where a graph characterization
of the random bits distribution is given. Our contributions in relation to
Chaum [1988] are as follows: (1) we provide a method (an efficient instance
that satisfies Chaum’s graph characterization) for selecting (a small num-
ber of) keys for each processor; (2) we give a new procedure to securely
distribute the keys, one that fits global communication networks (unlike
the ring assumed in Chaum [1988]); (3) we show that O~1! amortized
communication complexity on each link can be achieved for a long enough
input (and specify the length); (4) our algorithm is proven correct by a new
argument proving that each bit communicated has an equal probability of
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being 0 and being 1 for a particular adversary; and (5) while the case of an
anonymous sender is considered in Chaum [1988], in the present work we
also suggest schemes for the cases in which the receiver(s) is (are) anony-
mous, and in which both the sender and the receiver are anonymous to
each other.

In Chaum [1988], it is assumed that the underlying communication
network is a ring and that a back-off mechanism is repeatedly used to send
data. In this work we consider the problem of anonymous communication
on a spanning tree of a general graph communication network. We note
that solutions for star and tree networks are briefly mentioned in Pfitz-
mann [1985] and Pfitzmann and Waidner [1987], with no details for the
way communication starts and terminates for this specific network. Our
contribution in relation to Pfitzmann [1985] and Pfitzmann and Waidner
[1987] is a detailed design for a (spanning) tree communication network.

Note that in the present work we do not concern ourselves with an active
adversary (also called a Byzantine adversary) that can corrupt the program
or forge messages on the links, as assumed in Waidner [1989]. The scheme
presented in Waidner [1989] is an extension of Chaum [1988] in the
following sense: the extension suggested in Waidner [1989] is a design of a
fail-stop broadcast instead of assuming reliable broadcast. The transmis-
sion stops once the broadcast gives an indication of the arrival of a different
input to some of the processors (thus a single Byzantine fault may stop the
transmission). We note that for a system with a general communication
graph, an active adversary may in fact partition the system into two or
more isolated connected components. In such a partition, processors of one
connected component cannot communicate with processors of any other
connected component. Since we consider systems with a general communi-
cation graph, we do not to address this case here.

Contributions: We specify the initialization (including seed distribution),
the communication, and the termination procedures that preserve anonym-
ity for the (spanning) tree communication network. We use an extra
random sequence (produced by a pseudorandom generator) shared by the
sender (and the receiver(s)) to encrypt (decrypt, respectively) the message,
avoiding the use of an additional different scheme for encryption and
decryption during the transmission of (long) messages. This new approach
is appropriate for the transmission of a very long sequence of bits, such as
video information to several recipients. Hence it can be used for anonymous
multicast such as multicast by cable TV.

Our initialization scheme is designed to cope with the problem of infor-
mation revealed by the back-off mechanism (see Bos and Boer [1989]) by
using a predefined order of transmission. Generally speaking, the back-off
mechanism is used to cope with the situation in which several processors
simultaneously try to transmit information. When processors identify such
a situation, the processors stop transmitting and each tries again following
a randomly chosen waiting period. Thus, an outside observer can conclude
that (a subset of) the processors that try to transmit would like to
communicate with other processors. We solve this problem by giving each
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processor a time slot in which it can request communication with other
processor(s), all the (encrypted) requests arrive (in a mixed order) at a
single processor that can count the number of requests, without gaining
any information about the identities of the requesting processors.

In a network of n processors, our algorithm (after a preprocessing stage)
sends O~1! bits on each tree link in order to transmit a clear-text bit of
data, and each processor computes O~k! pseudorandom bits for the trans-
mission of a clear-text bit. Multiple anonymous transmission is possible by
executing in parallel several instances of our algorithm. Each instance uses
part of the bandwidth of the communication links. Our algorithm is secure
for both outside adversary and a k-listening internal dynamic adversary.

The rest of this paper is organized as follows. The next section uses a
simple example to demonstrate the problem and possible solutions. The
problem statement appears in Section 3. The anonymous communication
(our Xor-Tree algorithm), which is the heart of our scheme, appears in
Section 4. Sections 5 and 6 sketch the anonymous seeds transmission and
the initialization and termination schemes, respectively. Extensions and
concluding remarks appear in Section 7.

2. A SIMPLE EXAMPLE

In this section we examine a very simple special case in order to illustrate
the issues and to offer a solution to this special case. We stress that we
develop a general framework that works for the general case (e.g., the case
of a general communication graph, unknown receiver, etc.) as well.

Suppose we are dealing with a network with 9 nodes,

P1 3 P2 3 P3 3 P4 3 P5 3 P6 3 P7 3 P8 3 R,

where R is the “receiver” node and one of the Pi is the command-and-
control center that must broadcast commands to R. The other Pj’s for j Þ i
are “decoys” used for transmission from Pi to R, and also to “hide” which
particular Pi is the real command-and-control center. That is, in this
simplified example, we only wish to hide from an adversary the Pi that is
the real command-and-control center that sends messages to R. Before we
present our solution, we want to examine several inefficient, but natural,
simple strategies and then explain their drawbacks.

Communication-inefficient solution: One simple (but inefficient!) way to
hide the Pi that is the command-and-control center is for every Pi to
broadcast an (encrypted) stream of messages to R. Thus, R receives 8
different streams of messages, ignores all the messages except those from
the real command-and-control center, and decrypts that one. Every proces-
sor Pi forwards messages of all the smaller-numbered processors, and in
addition sends its own message. Clearly, an adversary that is monitoring
all the communication channels and that can also monitor the internal
memory of one of the Pi’s (which is not the actual command-and-control
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center) does not know which Pj is broadcasting the actual message.
Drawback: Notice that instead of one incoming message, R must receive 8
messages, thus the amount of information the real command-and-control
center can send to R is only 1 / 8 of the total capacity! As the network
becomes larger, this solution becomes even more costly. Note that this
solution enables the receiver to identify the sender.

Computation-inefficient solution: In the previous example, the drawback
is that the messages from decoy command-and-control nodes take up the
bandwidth of the channel. In the following solution, we show how this
difficulty can be avoided. In order to explain this solution, we use pseudo-
random generators1 [Blum and Micali 1984; Hastad et al. 1999]. We first
pick 8 seeds s1, . . . , s8 for the pseudorandom generator and give seed si to
processor Pi. Processor P1 stretches its seed s1 into a long pseudorandom
sequence and, at each time step, sends the next bit of its sequence to
processor P2. Processor P2 takes the bit it got from processor P1 and “xors”
it with its own next bit from its pseudorandom sequence G~s2! and sends it
to P3, and so forth. The processor Pj that is the real command-and-control
center additionally “xors” into each bit it sends a bit of the actual message
mi. Processor R is given all the 8 seeds s1, . . . s8, so it can take the
incoming message, (which is the message from command-and-control center
“xored” with 8 different pseudorandom sequences). Hence, R can compute
all the 8 pseudorandom sequences, subtract (i.e., xor) the incoming message
with all the 8 pseudorandom sequences, and get the original command-and-
control message m. The advantage of this solution is that the entire
bandwidth of the channel between command-and-control processor and the
receiver is used to send the messages from the center to the receiver. Note
that any Pj that is not a command-and-control center still cannot deduce
which other processor is the real center. Drawback: The receiver must
compute 8 different pseudorandom sequences in order to recover the actual
message. As the network size grows, this becomes prohibitively expensive
in the amount of computation the receiver needs to do in order to compute
the actual message m.

Our solution: Here, we present a solution that is both computation-
efficient and communication-efficient, and is secure against an adversary
that can monitor all the communication lines, and can also learn the
internal memory content of any one of the intermediate processors. The
seed distribution (for a particular communication session) is as follows:

—Pick 9 random seeds for pseudorandom generator s0, s1, . . . , s8.

—Give seed s0 to the real command-and-control processor.

1Pseudorandom generator G~s! 5 r1, r2, . . . takes a small initial “seed” of truly random bits
and deterministically expands it into a long sequence of pseudorandom bits. There are many
such commercially available pseudorandom generators, and any “off-the-shelf” generator that
is sufficiently secure and efficient will suffice.

Xor-Trees • 69

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.



—Additionally, give seed $s1, s2% to processor P1 ; give two seeds $s2, s3% to
processor P2 ; give two seeds $s3, s4% to processor P3, and so on. That is,
we give the seeds $si, si11% to each processor Pi for i $ 1.

—Give one seed s0 to receiver R.

Suppose processor P4 is the real command-and-control center. Then the
distribution of seeds is as follows:

P1~s1, s2! 3 P2~s2, s3! 3 P3~s3, s4! 3 P4~s4, s5, s0! 3 P5~s5, s6! 3

3 P6~s6, s7! 3 P7~s7, s8! 3 P8~s8, s1! 3 R~s0!

Now the transmission of the message is performed in the same fashion as
in the previous solution—that is, each processor receives a bit-stream from
its predecessor, “xors” a single bit from each pseudorandom sequence that
it has, and sends it to the next processor. The command-and-control center
“xors” bits of the message into each bit that it sends out.

Note that adjacent processors “cancel” one of the pseudorandom se-
quences by xoring it twice, but introduce a new sequence. For example,
processor P2 cancels s2, but “introduces” s3. Moreover, each processor must
now only compute the output of at most three seeds. Yet it can be easily
verified that if the adversary monitors all the communication lines and in
addition can learn the seeds of any single processor Pi that is not a
command-and-control center, then it cannot gain any information as to
which Pi is the real command-and-control center, even after learning the
two seeds that belong to processor Pi.

Of course, the simplified example that we present only works when the
adversary cannot monitor both the actual command-and-control center and
the memory contents of the receiver. (We note that these and other
restrictions can be resolved; we will address this further in the paper.)
Moreover, it should be stressed that the restricted solution presented above
does not work if the adversary is allowed to monitor more than one decoy
processor. In our example, P3 and P5 know the seeds s4 and s5 and
therefore can observe that P4 is using an additional seed, the special seed
of the sender. Note that our solution requires that the command-and-
control and the receiver have a special common seed s0; one obvious
extension is to ensure that every two processors have a distinct additional
seed that is used for communication between themselves. We should point
out that in the rest of the paper we show how the above scheme can be
extended to one that is robust against adversaries that can monitor up to k
stations, where in our solution every processor is required to compute the
number of different pseudorandom sequences proportional to k only (in
particular, at most 2k 1 1). Moreover, we also show how to generalize the
method to arbitrary topology networks/infrastructures. Additionally, we
show how the initial distribution of seeds can be done without revealing the
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command-and-control center. Finally, we show how communication from
stations back to the command-and-control center can be achieved without
the stations knowing the node of the network at which the center is located,
and how totally anonymous communication can be achieved.

2.1 Secret-Key Solutions vs. Public-Key Solutions

The above simple solution is a secret-key solution; that is, we assume that
before the protocol begins, a set of seeds for pseudorandom function must
be distributed in a private and anonymous manner. Thus, we combine this
solution with a preprocessing stage in which we distribute these seeds
using a public-key solution; that is, a solution where we assume that all
users/nodes only have corresponding public and private keys and do not
share any information a priori. Thus, our overall solution is a public-key
solution, where we do not assume that users share any private data before
communication begins. As usual in many such cryptographic settings, our
overall efficiency comes from the fact that we switch from public-key to
secret key solutions and then show how to (1) make an efficient private-key
implementation , and (2) how to set up secret-keys in a preprocessing stage
by using public keys in an anonymous and private manner.

3. PROBLEM STATEMENT

A communication network is described by a communication graph G 5
~V, E!. The nodes V 5 $1, · · ·, n% represent the processors of the network.
The edges of the graph represent bidirectional communication channels
between the processors. Let us first define the assumptions and require-
ments, starting with the adversary models. The adversary is a passive
listening adversary that does not intervene in the computation. In particu-
lar, it neither forges messages on the links nor corrupts the program of the
processors.

—An outside adversary is an adversary that can monitor all the communi-
cation links, but not the contents of the processor’s memory.

—An internal dynamic k-listening adversary (inside adversary, for short) is
an adversary that can choose to “bug” (i.e., listen to) the memory of up to
k processors. The targeted processors are called corrupted, compromised,
or colluding processors. Corrupted processors reveal all the information
they know to the adversary, but they still behave according to the
protocol. The adversary does not have to choose the k faulty processors in
advance. While the adversary corrupts fewer than k processors, the
adversary can choose the next processor to be corrupted using the
information the adversary gained thus far from the processors that are
already corrupted.

The following assumptions are used in the first phase of our algorithm,
which is responsible for seed distribution. Each of the n processors has a
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public-key/private-key pair. The public key of a processor P is known to all
the processors, while the private key of P is known only to P.

The anonymity of the communicating parties can be categorized into four
cases:

—Anonymous to the nonparticipating processors: A processor P wishes to
send a message to processor Q without revealing to the rest of the
processors and to the inside and outside adversary the fact that P is
communicating with Q.

—Anonymous to the sender and the nonparticipating processors: P wishes
to receive a message from Q without revealing its identity to any
processor including Q as well as to an inside and outside adversary.

—Anonymous to the receiver(s) and the nonparticipating processors: P
wishes to send (or multicast) a message without revealing its identity to
any processor, as well as to an inside and an outside adversary.

—Anonymous to the sender, to the receiver, and the nonparticipating
processors: A processor P wishes to communicate with some other proces-
sor, without knowing the identity of the processor and without revealing
its identity to any processor, including the one it is communicating with,
as well as to an inside and outside adversary. (This is similar to the “chat
room” world-wide-web applications, where two processors wish to com-
municate with one another totally anonymously, without revealing their
identity to each other or anybody else.)

In the sequel, we consider the first anonymity category. Then, in Section
7 we show how to extend the solution to the other three anonymity
categories.

The efficiency of a solution is measured by the communication overhead,
which is the number of bits sent over each link in order to send a bit of
clear-text data.2 The efficiency is also measured by the computation over-
head, which is the maximal number of computation steps performed by each
processor in order to transfer a bit of clear-text data.

The algorithm is a combination of anonymous seeds transmission, initial-
ization, communication, and termination. In the anonymous seeds trans-
mission phase, processors that would like to transmit anonymously send
seeds for pseudorandom sequence generators to the rest of the processors. The
anonymous seeds transmission phase also resolves conflicts of multiple re-
quests for transmission by an anonymous back-off mechanism. Once the seeds
are distributed, the communication can be started. Careful communication,

2Note that in a system that has a chain communication graph, like the one presented in
Section 2, v~1! bits on each link (or a total of v~n! bits) are required to transmit a bit from a
sender to a receiver when no information concerning the command-and-control can be
revealed.
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initialization, and termination procedures that hide the identity of the
sender must be performed.

We first describe the core of our algorithm, which is the communication
phase. During the communication phase, seeds are used for the production
of pseudorandom sequences. The anonymous distribution of seeds is pre-
sented following the description of the anonymous communication phase.

4. ANONYMOUS COMMUNICATION

4.1 The Computation-Inefficient O~n! Solution

The communication algorithm is designed for a spanning tree T of a general
communication graph, where the relation parent-child is naturally defined
by the election of a root. We start with a simple but inefficient algorithm,
which requires O~n! computation steps of a processor. (This algorithm is
similar to the computation-inefficient solution presented in Section 1, but
for the general-topology graph.) We then show how to make it computation-
efficient as well. In this (computation-inefficient) solution the sender
chooses a distinct seed for each processor. The sender can then encrypt
each bit of information using the seeds of all the processors including its
own seeds. Each such seed is used for producing a pseudorandom sequence.
The details of the algorithm appear in Figure 1. The symbol Q is used to
denote the binary xor operation.

Fig. 1. O~n! Computation steps algorithm, for a processor Pj.
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Figures 2 and 3 schematically depict the upwards and downwards
communication. Rectangles represent processors and arrows represent the
direction of communication on the tree. The number written in each
rectangle in Figure 2 is the result of the xor of the ith bits of the
pseudorandom sequence of the processor (the number the sender has is the
result of xoring all these bits). The output of the processor is the xor of the
outputs of its children, xored with the value obtained from its pseudoran-
dom sequence (the number written in the rectangles). In this example, the
ith bit of the additional sequence obtained from the the sender’s special
seed is 0 and the ith bit of data is 1. Figure 3 demonstrates the fact that
the root broadcasts the result to every processor in the tree and the receiver
uses the special sequence (shared with the sender) to obtain the clear-text.
We note that Figures 2 and 3 depict only the way a single bit is handled. In
fact, every time unit, a new data bit is handled (in a pipeline fashion) in a
similar way.

Note that the ith bit produced by the root is a result of xoring every ith
bit of the pseudorandom sequences twice (except the sender’s sequence):
once by the sender and then, during communication, upwards. Each en-
crypted bit of data will be xored by the receiver(s) using the senders’ seed to
reveal the clear-text. Note that the scheme is resilient to any number of
colluding processors as long as the sender and the receiver(s) are nonfaulty.
This simple scheme requires a single node (the sender) to compute O~n!
pseudorandom bits for each bit of data. (We remark that, in contrast, our
Xor-Tree algorithm requires the computation of only O~k! pseudorandom
bits to cope with an outside adversary and an internal dynamic k-listening
adversary.) The next lemma states the communication and computation
complexities of the algorithm presented in Figure 1.

LEMMA 4.1 The next two assertions hold for every bit of data to be
transmitted over each edge of the spanning tree:

—The communication overhead of the algorithm is O~1! per edge.
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Fig. 2. Upwards communication.
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—The computation overhead of our algorithm is O~n! pseudorandom bits to
be computed by each processor per each bit of data.

PROOF. In each time unit two bits are sent in each link: one upwards
and the other downwards. Since a bit of data is sent every time unit
(possibly except the first and last h time units, where h , n is the depth of
the tree), the number of bits sent over a link to transmit a bit of data is
O~1!. The second assertion follows from the fact that the sender computes
the greatest number of pseudorandom bits in every time unit, namely O~n!
pseudorandom bits in every time unit. e

4.2 Towards Our O~k! Solution: The Choice of Seeds

For the realization of the communication phase of our O~k! solution, we use
n~k 1 1! distinct seeds where k is less than n / 2 2 1. Each processor
receives 2~k 1 1! seeds. To describe the sender’s seed distribution deci-
sions, we use k 1 1 levels, each consisting of two layers of seeds. We order
the processors by their (arbitrary assigned) indices P1, P2, · · ·, Pn, we use
the relation follows in a straightforward manner.

The seed distribution procedure appears in Figure 4. An example for the
choice of seeds for the processors appears in Figure 5.

The choice of seed made by the sender has the following properties:

—Each seed is shared by exactly two processors (here we use the fact that
k , n / 2 2 1).

—Every two processors share at most one seed.

—For every processor P, P shares a (distinct) seed with every processor of
the k11 processors that immediately follow P. If there are fewer than
k11 processors following P, then P shares a (distinct) seed with every
one of the processors that immediately follow P up to and including Pn.

4.3 The Xor-Tree Algorithm

Here we present our main algorithm, the Xor-Tree algorithm, which
appears in Figure 6. Note that the algorithm in Figure 6 is different from

1

11 1

1 1 1

d =1 receiver
b0 = 0

Fig. 3. Downwards communication.
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the algorithm in Figure 1 in the way pseudorandom bits cancel each other
in the upwards communication phase. The downwards communication in
Figure 6 is only encoded by bits produced from the additional seed s0.

4.4 An Abstract Game

In this section we describe an abstract game (see Figure 7) that will serve
us in analyzing and proving the correctness of the Xor-Tree algorithm in
the previous section.

The adversary gets to see the outputs of all the players. The adversary
can pick k out of the players and see their seeds. We claim, and later prove,
that when the adversary does not pick the sender then every one of the
remaining ~n 2 k! processors that are not picked by the adversary is
equally likely to be the sender for any poly-bounded adversary. A poly-
bounded adversary is an adversary with computation power bounded by
computations of polynomial time. We show that, if the poly-bounded
adversary can predict the sender in polynomial time, then we can use this
adversary to break a pseudorandom generator in polynomial time (see, e.g.,
Hastad et al. [1999]).

We proceed by showing that the above assignment of seeds yields a
special seed dsP for each processor P. We choose dsP out of the seeds
assigned to each nonfaulty processor P. We order the processors by their
index in a cyclic fashion such that the processor that follows the ith
processor, i Þ n, is the processor with the index i 1 1, and the processor
that follows the nth processor is the first processor. Then we assign a new
index for each processor such that the sender has the index one, the

Fig. 4. The choice of seeds.

Fig. 5. An example for the distribution of seeds, where n 5 9 and k 5 2.
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processor that follows the sender has the index two, and so on. These new
indices are used for the interpretation of next, follows, prior, and last in the
description of the choice of special seeds that appears in Figure 8. Recall
that every two processors share at most one seed.

Note that by our special seed selection, described in Figure 8, the special
seeds are not known to the k faulty processors.

THEOREM 4.2 In the abstract game, any of the ~n 2 k! nonfaulty proces-
sors is equally likely to be the sender for any poly-bounded internal
k-listening adversary.

PROOF. We prove that the ith bit produced by any nonfaulty processors
is equally likely to be 0 or 1 (for any poly-bounded adversary). Let P be the
first nonfaulty processor that follows the sender (P is among the first k 1 1
processors that follow the sender). Let dsP1 be the special seed of the sender
that is shared only with (the nonfaulty processor) P. The ith bit that the
sender outputs is a result of a xor operation with the ith bit of the

Fig. 6. The Xor-tree algorithm, for a processor Pj.

Fig. 7. The abstract game.
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pseudorandom sequence (among other pseudorandom sequences) obtained
from dsP1. Since only P (that is a nonfaulty processor) shares dsP1 with the
sender, it holds that the ith bit output by the sender is equally likely to be
0 or 1 (for any poly-bounded internal i-listening adversary). A similar
argument hold for the output of P, since there exists a special seed shared
with the next nonfaulty processor Q. In general, it holds for the output of
every nonfaulty processor. The same argument holds if any of the n 2 k
nonfaulty processors is the sender. Thus, for any polynomially-bounded
k-internal and external adversary, the distribution of the output is not
correlated to the identity of the sender. e

The fact that the adversary can be a dynamic adversary is implied by
Corollary 4.4. The proof of the corollary is similar to the proof of Theorem 4.2.

COROLLARY 4.3 For any k9 # k after the adversary chooses k9 faulty
processors, any of the ~n 2 k9! nonfaulty processors is equally likely to be
the sender for any poly-bounded internal k9-listening adversary.

4.5 Reduction to the Abstract Game

In this section we prove that if there is an algorithm that reveals informa-
tion about the identity of the sender in the tree, then there exists an
algorithm that reveals information about the identity of the sender in the
abstract game. The above reduction together with Theorem 4.2 yields the
proof of correctness for the Xor-Tree algorithm.

Roughly speaking, the reduction starts assuming that there exists an
adversary A that reveals information about the sender in a tree T of n
processors. Then we show that an adversary A9 that reveals information
from the abstract game exists. This last adversary uses the output of the
abstract game to simulate the output of the tree. Then A9 runs A to reveal
information on the sender in the tree. In more detail, an abstract game of n
nodes is mapped to the tree, as described in Figure 9.

Fig. 8. Choice of special seeds.
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THEOREM 4.4 In the Xor-Tree algorithm, any of the ~n 2 k! nonfaulty
processors is equally likely to be the sender for any poly-bounded internal
k-listening adversary.

PROOF. If there exists an adversary A that reveals information about
the identity of the sender in a tree T, then there exists an abstract game
with the same number of processors and the same seed distribution, such
that the application of the reduction in Figure 9 yields the communication
pattern of T and reveals information about the sender’s identity in the
abstract game. This contradicts Theorem 4.2, and thus contradicts the
existence of A. e

The next Lemma states the communication and computation overheads
of the anonymous communication algorithm.

LEMMA 4.5 The next two assertions hold for every bit of data to be
transmitted over each edge of the spanning tree:

—The communication overhead of the algorithm is O~1! per edge.

—The computation overhead of our algorithm is O~k! pseudorandom bits to
be computed by each processor per each bit of data.

PROOF. In each time unit two bits are sent in each link: one upwards
and the other downwards. Since a bit of data is sent every time unit
(possibly except the first and last h time units, where h , n is the depth of
the tree), the number of bits sent over each link to transmit a bit of data is
O~1!. The second assertion follows from the fact that in each time unit each
processor generates at most 2k 1 3 pseudorandom bits. e

5. ANONYMOUS SEED TRANSMISSION

We first outline the main ideas in the seed transmission scheme and then
give full details. Every processor has a public-key that is known to all other
processors. A virtual ring defined by the Euler tour3 on the tree is used for
seed transmission. Note that the indices of the processor in this description

3Called a Eulerian circuit [Knuth 1997, p. 374].

Fig. 9. The reduction.
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are related to their location on the virtual ring. First, all processors send
messages to P1 over the (virtual) ring. Those processors that wish to
broadcast send a collection of seeds, and those processors that do not wish
to broadcast, send dummy messages of equal length. To do so in an
anonymous fashion (so that P1 does not know which message is from which
processor), k 1 1 of Chaum’s mixes [Chaum 1981] are used, where k 1 1
(real) processors just before P1 in the Euler tour are used as mixes. Hence,
P1 can identify the number of nondummy arriving messages, but not their
origin. In case more than one nondummy message reaches P1, a standard
back-off algorithm is initiated by P1. Namely, P1 notifies the processors
that more than one processor sent a message, and the processors use
randomization to decide whether to resend a message during the new seed
collection procedure that P1 starts. Once exactly one message (containing a
collection of seeds) arrives at P1, the seed distribution procedure described
above (for sending a collection of seeds to P1) is used to send the seeds to P2

and so on. (At this point processors know that only one processor wishes to
broadcast.) This procedure is repeated n times in order to allow the
anonymous sender to transmit a collection of seeds to every processor.

The details follow. The seed transmission procedure uses a virtual ring R

defined by a Euler tour of the tree T. Note that each edge of T appears
exactly twice in R, and therefore the number of edges and nodes in R is
2n 2 2. The seed transmission procedure starts with the transmission of
seeds to the first processor P1. Let L1 5 P1, P2, · · ·, P2n22 be the list of
processors in R in clockwise order starting with P1; the indices 2 to 2n 2 2
are implied by the Euler tour and not by the indices of the processors in T.
Note that a single processor of T may appear more than once in L1. We use
the term instance for each such appearance. Define the reduced list RL1 to
be a list of processors that is obtained from L1 by removing all but the first
instance of each processor. Thus, in RL1 every processor of T appears
exactly once. The communication of seeds uses the anticlockwise direction.
Define the last l real processors to be the first l processors in RL1. When
transmitting seeds to Pi, Li, RLi and the last l processors, are defined
analogously.

In the first stage, every processor that wants to communicate with
another processor sends an encrypted message with the seeds to be used by
P1. Note that P1 can be a faulty processor, thus a careful transmission
must be carried on. Let L1 5 P2n22, P2n23, · · ·, P1 be the list of processors
in R in anticlockwise order i.e., L1 in reverse order. Again, L1 includes more
than one instance of each processor P of T. Define the active instance of a
processor P of T in L1 to be the last appearance of P in L1. Define an active
message to be a message that arrives to an active instance of a processor.
The details of the anonymous seed transmission to P1 appears in Figure 10.

As we prove in the sequel, no information concerning the identity of the
requesting processors is revealed during the anonymous seed transmission
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to P1 except the information that can be drawn from the value of nt—the
number of processors that would like to transmit. Once nt 5 1, the processors
start sending messages to P2 in a fashion similar to the one used to send seeds
to P1. Then processors send seeds to P3 and so on, until the processors send
messages to Pn. Note that when nt 5 1 there is exactly one sender for the
next communication session, and at the end of the seed distribution
procedure every processor holds the seeds distributed by the sender.

LEMMA 5.1 A coalition of k colluding processors cannot reveal the
identity of the seed distributors.

PROOF. We prove the lemma for the transmission of seeds from the
sender to P1. Note that one of the last k 1 1 real processors must be
nonfaulty. If P1 is nonfaulty, then no information concerning the identity of
the seed distributors is revealed to the adversary. Otherwise, when P1 is
faulty, let Pi be the nonfaulty processor that is the last to reorder the set
$mn

i21, mn21
i21 , · · ·mi

i21% upon the arrival of $mn
i , mn21

i , · · ·mi11
i %. Since every

arriving mi is encrypted with Pi’s public key, no set of k-faulty processors

Fig. 10. Anonymous seed transmission to P1.

Xor-Trees • 81

ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000.



can decrypt mi (unless mi was originated by a faulty processor). Pi

randomly orders the set $mn
i21, mn21

i21 , · · ·mi
i21%, thus it holds that a coali-

tion of k processors cannot reveal the identity of the sender of any mi21 in
$mn

i21, mn21
i21 , · · ·mi

i21%. e

The next lemma states the communication overhead of the seed trans-
mission procedure.

LEMMA 5.2 The expected number of bits sent during the seed transmis-
sion procedure is O~g~kn!2!.

PROOF. Each (of the n) processors sends O~k! encrypted seeds of size g
to P1. A seed that is encrypted k times consists of O~kg! bits. Hence, the
communication to P1 consists of nk2glog n bits (where the log n factor is
related to the expected number of back-offs). The communication to the rest
of the n processors consists of n2k2g bits, which implies O~g~kn!2! bits per
an edge. Thus, as long as the message size p to be broadcast is greater than
O~g~kn!2!, we achieve O~1! overall amortized cost per edge, and otherwise
we get O~g~kn!2 / p! amortized cost. e

6. INITIALIZATION AND TERMINATION

When the seed distribution procedure is over, the transmission of data may
start. Pn broadcasts a signal on the tree that notifies the leaves that they
can start transmitting data. The leaves start sending data in a way that
ensures that every nonleaf processor receives the ith bit from its children
simultaneously. Thus, the delay in starting transmission of a particular
leaf l is proportional to the difference between the longest path from a leaf
to the root and the distance of l from the root. Each nonleaf processor waits
to receive the ith bit from each of its children, uses these bits and its seeds
to compute its own ith bit, and sends the output to its parent. Note that
buffers can be used in case the processors are not completely synchronized.
A processor P that receives the ith bit from one of its children will buffer
this bit until P receives the ith bit from every one of its children, then
computes its output and sends it to its parent.

The above procedure implies a latency of O~h! time units (where h is the
depth of the tree) for each bit to arrive at the root of the tree and then to its
destination(s). Note however that these O~h! time units can be viewed as
part of preprocessing. Once preprocessing is over, a new bit is sent (and
received) in every time unit.

The sender can terminate the session by sending a termination message
that is not encrypted by its additional seed. This message will be decrypted
by the root that will broadcast it to the rest of the processors to notify the
beginning of a new anonymous seed transmission.
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7. EXTENSIONS AND CONCLUDING REMARKS

Our treatment so far considered the anonymous sender case, which is also
anonymous to the nonparticipating processors.

Anonymous receiver: A simple modification of the algorithm can support
the anonymous receiver case: The receiver plays the role of a sender of the
previous solution in order to communicate, in an anonymous fashion, an
additional seed to the sender. Then the sender uses the same scheme for
the anonymous sender case with the seed the sender got from the receiver.

Anonymous sender and receiver: To achieve anonymous communication in
which both the sender and the receiver are anonymous, we propose the
following procedure: The two participants, P and Q, that would like to
communicate (each) send anonymously distinct seeds to P1, . . . , Pk11. It is
possible that more than two participants will send anonymously distinct
seeds to P1. In such a case, P1 will broadcast to the processors that more
than two processors tried to chat anonymously, and a back-off mechanism
will be used until exactly two participants, P and Q, send seeds to P1.
Then, P1 will encrypt and broadcast the two seeds it got, each seed
encrypted (using distinct intervals of the pseudorandom expansions of the
two seeds) by the other seed. Hence, each of the two processors will use its
seed to reveal the seed of the other processor. At this stage, P and Q will
continue and anonymously send seeds to P2, . . . , Pk11. The same proce-
dure continues for P2, P3, P4 · · · Pk11. Now P has a set of k 1 1 seeds that
are used for encryption of messages sent to Q, and Q has k 1 1 seeds used
for encryption messages sent to P. They both act as senders, using the bit
resulting from xoring the bits produced by the set of the k 1 1 seeds as the
bit of special seed known to the receiver in our anonymous sender scheme.
The back-off mechanism ensures that one of P and Q starts the communi-
cation and then the other can replay (when the first allows him to, i.e., stop
transmitting data). We remark that it is possible to have more than two
participants by a similar scheme.

The security of the above algorithm is derived from the fact that there
must be a nonfaulty processor among the processor P1, P2, . . . , Pk11, and
therefore the adversary does not know at least one key used to encrypt and
decrypt messages by the sender and the receiver.
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