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Abstract— In a recent paper, Faloutsos et al. [1] found that the inter
Autonomous System (AS) topology exhibits a power-law vertex degree dis-
tribution. This result was quite unexpected in the networking community
and stirred significant interest in exploring the possible causes of this phe-
nomenon. The work of Barabasi and Albert [2] and its application to net-
work topology generation in the work of Medina et al. [3] have explored
a promising class of models that yield strict power-law vertex degree dis-
tributions. In this paper, we re-examine the BGP measurements that form
the basis for the results reported in [1]. We find that by their very nature
(i.e., being strictly BGP-based), the data provides a very incomplete picture
of Internet connectivity at the AS level. The AS connectivity maps con-
structed from this data (the original maps) typically miss 20–50% or even
more of the physical links in AS maps constructed using additional sources
(the extended maps). Subsequently, we find that while the vertex degree dis-
tributions resulting from the extended maps are heavy-tailed, they deviate
significantly from a strict power law. Finally, we show that available his-
torical data does not support the connectivity-based dynamics assumed in
[2]. Together, our results suggest that the Internet topology at the AS level
may well have developed over time following a very different set of growth
processes than those proposed in [2].

I. INTRODUCTION

Recent studies concerning Internet connectivity at the level
of Autonomous Systems (ASs) have attracted considerable atten-
tion. For example, the empirically derived power-law relation-
ships in the Internet’s AS topology, originally due to Faloutsos
et al. [1], suggest that the random and hierarchical graph mod-
els that have until recently been used to generate Internet-like
topologies may not capture critical features or relevant struc-
tures inherent in actual networks. Pursuing a very different
(and—for the networking community—novel) class of dynamic
graph models, Barabasi and Albert [2] show that such power-law
graphs can arise from a simple dynamic model that combines in-
cremental growth with a preference for new nodes to connect to
existing ones that are already well connected (subsequently re-
ferred to as the BA model). Citing [1], Barabasi and Albert also
state that this intuitively appealing growth model applies to the
Internet’s AS graph and therefore explains why AS graphs ex-
hibit power-law vertex degree distributions. In this paper, we re-
visit the measurements used in the original discovery of power
laws in AS topologies [1]. In re-examining this data, we ask
the following two questions: (1) Are the measurements used in
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[1] sufficiently complete to establish a strict power law relation-
ship for AS vertex degree distributions? and (2) How can the
available measurements be used to establish the validity of In-
ternet topology models at the AS level such as those proposed
by Barabasi and Albert [2]?

The measurements that form the basis for the original power-
law study [1] consist of BGP routing tables collected by the
route server route-views.oregon-ix.net (henceforth,
the Oregon route server) [4]. The use of this data for the pur-
pose of studying the Internet’s AS connectivity structure raises
the following important issue. There is no a priori reason to
believe that BGP AS paths completely capture the AS topol-
ogy. In particular, because of the way BGP routing works, an
instantaneous snapshot of the BGP routing table may not re-
veal links belonging to less preferred or non-advertised paths.
Consequently, the AS connectivity structure gleaned from the
Oregon route server data may provide a very incomplete picture
of the physical connectivity that exist in the actual Internet. A
more complete picture of Internet connectivity may potentially
question or even invalidate some of the earlier findings. In Sec-
tion II, we provide qualitative and quantitative insight into the
degree of incompleteness of AS connectivity graphs constructed
from BGP routing tables obtained solely from the Oregon route
server. In particular, we observe that while the measured AS
vertex degrees are clearly highly variable in the sense that they
typically vary over 3–4 orders of magnitude, the vertex degree
distributions resulting from more complete AS graphs do not
conform to strict power-law distributions but are consistent with
the more flexible class of heavy-tailed distributions that include
the Weibull distribution as well as the family of distributions
where only the tail behavior is characterized by a power law but
where the rest of the distribution can be essentially arbitrary.

In Section III we outline a general framework for validating
the explanatory aspect of any proposed AS-level connectivity
model. The discovery of an empirical phenomenon, such as
the one reported in [1], is often followed by proposed expla-
nations. Such proposed explanations may put forth a dynamical
model that identifies a set of more elementary mechanisms as
the main cause of the said phenomenon. A critical feature of
the validation framework outlined in Section III is that it “closes
the loop” between the discovery process and the proposed ex-
planatory model. This “closing of the loop” is achieved by re-
quiring that the proposed model also conforms to measured data



at the level where the more elementary mechanisms are verifi-
able. In the case at hand, we want to validate the network growth
model put forth in [2] to explain the observed power law behav-
ior of the AS vertex degree distribution reported in [1].1 When
conformance is verified, the network model in question can be
expected to provide considerable new insights into the way net-
works organize themselves. The model can then be exploited for
various engineering purposes. On the other hand, if the verifica-
tion fails, the proposed model can serve well as simple “null hy-
pothesis” model to compare with and often motivates pursuing
new modeling approaches, but it cannot be considered a sound
explanation of the observed phenomenon (see [5]).

By performing a careful analysis of a collection of historical
AS maps, we show in Section III that measured data are largely
not consistent with the elementary mechanisms proposed in the
BA model (described in Section III-A). As such, the BA model
does not provide a valid explanation for the empirically derived
power law for the AS vertex degrees. Recent generalizations
of the BA modeling approach allow for vertex degree distribu-
tions that are more flexible than strict power-law distributions
[6]. Despite these recent generalizations, and in light of our
findings regarding AS vertex degree distributions that are not
strictly power-law, we argue in Section IV that: (1) our general
validation framework remains applicable, and (2) the connec-
tivity evolution rules underlying the generalized BA modeling
approach still do not conform to the data.

The BA model attempts to explain the highly variable ver-
tex degree distribution of the AS topology through the detailed
dynamics of how connections between ASs are established.
Our results and observations suggest that the Internet may have
evolved according to a set of mechanisms or growth processes
that are very different from the detailed growth dynamics that
are a hallmark of the original BA model and its generalizations.
We discuss the implications of our findings, as well as pos-
sible alternative approaches for explaining the high variability
phenomena associated with the Internet’s AS topology in Sec-
tion IV.

II. ON THE COMPLETENESS OF BGP-DERIVED AS MAPS

A number of recent studies characterize AS-level topology of
the Internet by exploiting connectivity information contained in
BGP routing tables. These studies, including [1], [2], mainly
obtain their data from the Oregon route server. The Oregon
route server connects to several operational routers within the
Internet solely for the purpose of collecting BGP routing tables.
From Nov. 1997 to Mar. 2001, these routing tables have been
archived on a daily basis by the National Laboratory for Ap-
plied Network Research (NLANR) [7]. Presently, archives of
the Oregon routing tables are available from sites such as the
Packet Clearing House (PCH) [8] (starting from Feb. 2001) and
routeviews.org [9] (starting from Apr. 2001). By making
these data sets available to the public, both the Oregon route
server and the archival sites are providing invaluable service to
the research community. The question we explore in this sec-
tion is, “How complete is the AS-level topology captured by the
Oregon route server?”

1Note that in this original context, the available data sets consist only of mea-
surements collected by the Oregon route server. Further, the validity of the strict
power-law relationship for the AS vertex degrees is taken for granted.
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Fig. 1. The completeness of non-local BGP views.

If the actual Internet AS-level topology were known, the com-
pleteness of a topology captured by the Oregon route server
could be checked by comparing it with the actual topology.
Since the actual topology is not known, how do we check the
completeness of the topology inferred from the Oregon route
server data? Our initial study investigating this question is re-
ported in [10]. In this section, we summarize the methodology
and main results of [10] that support our conclusion that AS
maps constructed solely from Oregon route server data contain
only a portion of AS connectivities on the Internet.

While we do not have a complete map of the Internet at the
AS level, we can re-construct the neighbor(s) each AS is con-
nected to (i.e., its connectivity map) if we have access to its
BGP routing table. We call the connectivity map of an ASi so
constructed the local view of ASi. From existing public route
servers [11] including the Oregon route server, we have obtained
BGP routing tables of 41 distinct ASs. A BGP routing table con-
tains the list of all destination address ranges accessible to an
AS. For each destination address range, the path vector (called
AS PATH) from the AS to the destination is also enumerated.
Hence ASi can infer some portion of ASj’s connectivities by
observing its AS PATHs that traverse ASj. We call the connec-
tivities of ASj so inferred by ASi the non-local view of ASj.
Next we ask, if we try to infer the connectivities of one of the
41 ASs (say, ASj) from the BGP routing tables of the other 40
ASs, i.e., by merging the 40 non-local views of ASj, how com-
plete would the inferred connectivities of ASj be compared to
its own local view2?

In addition to the above 41 ASs’ full BGP routing tables,
we collected summary BGP peering relationship information
from 70 different ASs that maintain Looking Glass sites [11].
Looking Glass sites are maintained by individual ISPs to help
troubleshoot Internet-wide routing problems. Since the BGP
information obtained from Looking Glass sites do not include
AS PATH information, we can only use it to construct local AS
views, which we then compared against non-local views con-
structed from the 41 ASs’ full BGP tables.

Fig. 1 plots the number of AS connectivities as seen from the
AS’s local view (on the x-axis) against that seen from the aggre-
gated non-local views (y-axis). In the case of the black dots, the

2We do not claim that the local views themselves are complete. We simply
want to know how complete are the non-local views relative to the local views.



TABLE I

AS GRAPH STATISTICS

Source # of nodes (%inc) # of edges (%inc)

Oregon BGP dump 11,174 23,409
+ RSs 11,268 (0.84%) 26,324 (12.5%)
+ RSs + LG 11,320 (1.3%) 27,899 (19.2%)
+ RSs + LG + RIPE 11,456 (2.5%) 32,759 (40.0%)

local views are obtained from the local AS’s full BGP routing
table. In the case of the white dots, the local views are obtained
from the local AS’s Looking Glass information.3 From this data,
we conclude in [10] that the Internet maintains a much richer
connectivity than can be observed by aggregating a handful of
BGP routing tables.

A. Obtaining AS Connectivity Information from the Internet
Routing Registry

Our results in the previous section suggest that to construct a
more complete AS map, we must obtain full BGP routing tables
from all existing ASs. Unfortunately, for security and commer-
cial reasons, most ASs are not willing to reveal their full BGP
routing tables. We next try to augment AS connectivity maps
by perusing the data available in the Internet Routing Registry
(IRR) [12]. The IRR maintains individual ISP’s (Internet Ser-
vice Provider) routing information in several public repositories
to coordinate global routing policy. We study two of the biggest
IRR databases available, the ones maintained by the Routing
Arbiter Project (RADB) and by Réseaux IP Européens (RIPE)
(see [13]). IRR’s routing policy database expresses routing in-
formation at various levels (e.g., individual address prefixes or
ASs, etc.). We illustrate how the routing information of the IRR
is expressed in Routing Policy Specification Language (RPSL)
with the following two hypothetical database records.

route: 1.2.3.0/24
desc: Foo.com
origin: AS1
changed: admin@foo.com 20010313
source: RADB

aut-num: AS1
as-name: FOO-ASN
desc: Foo Primary AS
import: from AS2 action pref=100;

from AS3 action pref=200;
accept AS4

export: to AS2 announce AS4
to AS3 announce ANY

changed: admin@foo.com 20010313
source: RADB

The first record states that on Mar. 13th, 2001, address range
“1.2.3.0/24” belongs to AS1. The latter record, which expresses
AS1’s routing policies, indicates that AS1 has two peering
neighbors AS2 and AS3 with which it exchanges route reach-
ability information of AS4. From this policy specification, we
can infer that AS1 has AS2 and AS3 as neighbors.

Traditionally, publication of an ISP’s routing policies in the
IRR has been voluntary. However, many European exchange

3Individual Looking Glass sites may not list all of an AS’s existing neighbors,
hence the number of connectivities inferred represent only the minimum number
of actual neighbors. This explains why we can see white dots lying above the
diagonal line in Fig. 1.
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points [14], [15], [16] now require members to register their
routes and peering policies in the RIPE database. Other non-
European ISPs have also started to rely more and more on the
IRR to filter route announcement at border routers [17]. Com-
paring the RADB and RIPE databases, we found that out of the
2,673 ASs registered with RADB as of May 25th, 2001, 2,039
(76.3%) published their routing policy; whereas in the RIPE
database, 4,203 ASs (93.6%) out of 4,492 registered ASs pub-
lished their routing policy.

The IRR records are manually entered and updated; in [10]
we present empirical evidence indicating that RIPE records are
kept up-to-date more frequently than RADB records. Based on
the relative completeness and freshness of the RIPE database,
we decided to use it in our study. In [10], we specify a set of
requirements each record must satisfy to be considered valid.
After filtering out all invalid records, we end up having only
1,026 ASs (about 24% of RIPE-registered ASs and about 9% of
all known ASs) with valid records in the RIPE database. Nev-
ertheless, as Table I shows, perusing the IRR database allows us
to identify an extra 4,860 edges (or about 17.42%) over the most
complete AS map constructed from all the BGP information we
can obtain (compare the last and second-to-last rows of the ta-
ble). The table shows the number of nodes (ASs) and edges
contained in the AS map constructed from the various sources,
cumulatively. The first row, labeled “Oregon BGP dump” lists
the number of nodes and edges found in the AS map constructed
solely from Oregon BGP routing tables. The second row (“+
RSs”) lists the number of nodes and edges found in all publicly
available full BGP routing tables (listed in [11]). In essence,
this row represents the most complete AS map one can construct
solely from publicly available BGP routing tables. The AS map
reported in the third row was constructed from the AS map in
the second row plus the Looking Glass (LG) data. Finally, the
AS map reported in last row includes the data from the RIPE
database. The “%inc” numbers in parentheses denote the per-
centage of increase in number of nodes and edges with respect
to the Oregon-based AS map of the first row.

B. AS Vertex Degree Distribution Revisited

We currently have 9 instances of the Looking Glass and RIPE
data sets. These were collected once a week, on the same day of
the week, for 9 consecutive weeks starting Mar. 2001. In Fig. 2



we plot the complementary distribution functions F c(x) = 1 −

F (x), where F (x) is the cumulative distribution function of the
AS vertex degree corresponding to one of these 9 data sets. All
9 graphs lie very close to each other and form the upper, curved
line in the figure (labeled once as “Oregon+RSs+LG+RIPE”).
For comparison, we also plot the F c(x)’s corresponding to the
9 AS maps constructed solely from Oregon BGP routing tables.
The BGP routing tables were obtained at times corresponding to
the time we collected the LG and RIPE data sets. These 9 graphs
also lie very close to each other and form the lower, straight line
of the figure (labeled once as “Oregon”). As is clear from the fig-
ure, the AS vertex degree distribution of the “Oregon” data sets
agrees with the strict power-law curve reported in [1]. However,
the more complete, though not necessarily complete, AS maps
constructed from sources beyond the “Oregon” data set show
more ASs with vertex degrees ranging from 4 to 300, resulting
in a curved line in the distribution. Nevertheless, the distribution
is certainly heavy-tailed or highly-variable in the sense that the
observed vertex degrees typically range over three or four orders
of magnitude; furthermore, the tail of the distribution may fit a
power law. While this finding is based on datasets that are in-
complete and—in the case of the RIPE data—somewhat biased
towards European networks, we discuss in [10] why we expect
our observation to remain valid, even when dealing with more
complete and less biased datasets.

III. BA-LIKE MODELS AND AS MAPS

Several recent papers in the physics and biology literature
have attempted to uncover the mechanisms that cause massive
graphs such as Web linkage [18], telephone call [19], or biblio-
graphic citation [20] graphs to exhibit phenomena similar to the
power-law vertex degree distribution observed in the AS map
constructed from the Oregon data set. Such works include the
papers [21], [2], [22], [23], [24], [20]. Of these works, [2], [23]
have attracted the most attention in the networking community
as their authors propose a very appealing construction of net-
work topologies. This construction was later used to form the
basis for the claimed error intolerance and attack vulnerability
of the Internet [23]. It also underlies the network topology gen-
erator described in [3].

In this section, we explore the question, “Do BA-like mod-
els explain why AS maps have highly variable degree distri-
butions?” After a short description of the BA model, we first
revisit the context in which it was proposed (as far as the appli-
cability to the Internet is concerned), namely for AS maps that
exhibit strict power laws in their vertex degree distributions and
have been re-constructed using only the Oregon data sets. By
applying a generally applicable validation framework for Inter-
net models, we demonstrate that while the BA model is able to
produce power-law degree distributions, it does not explain why
this type of distribution arises in the AS context.4 We argue later
in Section IV that the same conclusion still holds when the strict
power-law assumption on the degree distribution is replaced by
the high variability observed on more complete AS maps.

4We should point out that the BA model was proposed as a general model
for the evolution of scale-free networks. We emphasize that our results do not
question the applicability of the model to scale-free networks in general, but
only to the AS topology.

A. The Barabasi-Albert (BA) Model

The Barabasi-Albert (BA) model [2], [22] consists of three
generic mechanisms that drive the evolution of graph structures
over time to produce graphs with power-law vertex degree:
1. Incremental growth. Incremental growth follows from the
observation that most networks develop over time by adding
new nodes and new links to the existing graph structure.
2. Preferential connectivity. Preferential connectivity ex-
presses the frequently encountered phenomenon that there is
higher probability for a new or existing node to connect or re-
connect to a node that already has a large number of links (i.e.,
high vertex degree) than there is to (re)connect to a low-degree
vertex.
3. Re-wiring. Re-wiring allows for some additional flexibility
in the formation of networks by removing links connected to
certain nodes and replacing them by new links in a way that
effectively amounts to a local type of re-shuffling connections.
Thus, starting with some initial graph structure, at every step
during the evolution of the proposed BA model, each of follow-
ing local events has some probability of taking place. The first
event consists of adding a single new vertex, together with m
new edges that connect the node to the existing graph, in agree-
ment with the preferential connectivity assumption. The second
event consists of adding m new links, independent of the new
node addition above, by randomly selecting m preexisting ver-
tices with uniform probability as origin nodes and connecting to
m preexisting destination nodes following the preferential con-
nectivity rule. Finally, the third event consists of re-wiring m
existing links by random uniform selection of m vertices, and
for each of them, removing a given link and reconnecting to a
different node in agreement with the preferential connectivity
property. Evolving according to this algorithm, the authors of
[2], [22] showed that the resulting graph attains a steady state,
where, for example, the distribution of the node degree remains
unchanged over time and follows a power law with an exponent
that is a function of the input parameters.

B. A Framework for Validating the BA Model

To apply the BA model to the AS map, we first map the el-
ements and processes of the model to elements and processes
observed on the AS map. The BA model constructs a graph
structure that grows over time. Given an initial topology of the
graph at time t0, its topology at some later time ti is determined
by four primitive events: node birth, node death, link birth, and
link death. Each node is born with some number of links; over
time, a node gains some links and loses some links, and finally
some nodes leave the graph. In the AS map case, a “node” is an
“AS” and a “link” is a direct peering relationship between two
ASs. An AS is “born” when a new Internet Service Provider
(ISP) or a large institution with multiple stub networks joins the
Internet. When an AS is born, a number is assigned to the AS,
and BGP routers begin to see the new AS number in their routing
tables. A link is “born” when an existing AS decides to increase
(or change) its connectivity by peering with another AS. When a
link is born, a new path connecting the ASs incident to the new
link appears in BGP routing tables. An AS is “dead” when a cor-
responding entire administrative domain ceases to exist or gets
merged into another AS. The definition of AS and link “death”s
are given in the next section.
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By “validating the BA model,” we mean to determine em-
pirically whether the characteristics of birth/death processes as-
sociated with the observed AS map conform to the elementary
mechanisms underlying the BA model (i.e., incremental growth,
preferential connectivity, and re-wiring). To that end, we first
need to describe the data set we use in our empirical study.

C. Identifying the Births and Deaths of ASs and Links

In most studies involving the Oregon data sets, analyses are
done on snapshots of the AS map taken at various points in time.
To validate the BA model, however, requires the study of the AS
map as it evolves through time. Since the Oregon data set is the
only archive of daily snapshots of the AS map dating back to
Nov. 1997, this is the only data set available to us for this study.
To validate the BA model requires the identification of births
and deaths of ASs and links. One immediate concern we face
in doing this identification is to differentiate actual birth/death
events from artifacts of the data collection process. As pre-
viously described, the Oregon route server connects to several
operational routers within the Internet to collect their routing ta-
bles. Section II shows that the connectivities of an AS are only
partially captured by the BGP routing tables of other ASs. We
found that the set of operational routers from which the Oregon
route server collects routing tables changes over time, both in
membership and in number. When a link between two ASs ob-
served on an earlier snapshot of the AS map disappears from
later snapshots, it could be caused either by actual termination
of the peering relationship between the two ASs or simply by a
change in the Oregon route server’s set of peer routers. Our first
task is thus to determine the effect such ambiguities may have
on our study.

Between Nov. 1997 and Nov. 2000, the Oregon route servers
have peered with a total of 51 operational routers, with a maxi-
mum of 27 and minimum of 11 at any one time. Of these, only
8 have maintained steady relationships between Nov. 1998 to
Nov. 2000 (Table II). Table III lists the coverage of the AS map
constructed from the routing tables of these 8 steady peers (lim-
ited AS map) against that constructed from the routing tables of
all peers (full AS map). All the analyses reported in this paper
have been done on both the limited and full AS maps. We did
not find qualitatively significant differences in the results. This

TABLE II

EIGHT PEERS OF THE OREGON ROUTE SERVER

IP Address AS# Description Geographic Location
4.0.0.2 1 BBNPlanet Palo Alto, CA
12.127.0.249 7018 ATT Chicago, IL
192.121.154.25 1755 EBONE Europe
192.41.177.192 2548 DIGEX MAE-EAST
193.0.0.56 3333 RIPE NCC Amsterdam, NL
195.66.225.254 5459 LINX London, UK
202.232.1.8 2497 IIJ Japan
204.70.4.89 3561 C&W USA San Francisco, CA

TABLE III

COVERAGE OF AS MAP FROM THE 8 STEADY PEERS

November 1998 November 2000
Peer #ASs (%) #Links (%) #ASs (%) #Links (%)
All 4,320 (100) 7,877 (100) 9,592 (100) 19,035 (100)
8 Combined 4,292 (99.4) 7,298 (92.7) 9,536 (99.4) 17,291 (90.8)

ensures us that the ambiguity in identifying actual births/deaths
caused by artifacts of the data collection process does not have
a detrimental effect on the results of our analysis. For the rest
of the paper, we present only data obtained from the limited AS
maps dating from Nov. 1998 to Nov. 2000. We will refer to this
set of limited AS maps as “our data set.”

We mention two other caveats regarding our data set. First,
we found that some of the BGP routing tables collected by
NLANR were truncated prematurely, for example, the routing
tables from Dec. 1999 are mostly less than half the expected
size. We exclude all such truncated tables from our study. Sec-
ond, we found instances in our data set where an AS (or link)
disappears for a period of time. The authors of [25] reported
frequent losses of connectivity/reachability on the Internet due
partly to routing instabilities caused by BGP implementation
bugs, hardware glitches, and human errors. These outages can
last anywhere from several minutes, to several hours, to longer
than a week [26]. Outages are not modeled as contributing the
AS map evolution and growth in the BA model. Hence we dis-
count outages from our study of the birth/death processes, i.e.,
we assume that ASs/links are present even during their outages.
In our datasets, about one third of the ASs and two thirds of the
links experienced at least one outage.
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TABLE IV

VERTEX DEGREE DISTRIBUTION OF NEW OR DEAD ASS.

New ASs Dead ASs
Degree Freq. Degree Freq.

14 1 48 1
11 1 12 1
10 1 9 1

7 1 7 1
6 1 6 1
5 1 5 4
4 4 4 6
3 23 3 22
2 816 2 204
1 5591 1 1184

D. On the Incremental Growth Assumption

More formally, we define a birth to be an actual birth if we
have not seen the born AS or link in our data set prior to the
birth event. Similarly, a death is an actual death if the dead
AS/link never again appears in our data set subsequent to the
death event. To account for potential outages that started prior
to the start of our data set or extend beyond the end of our data
set, we discount all birth events in the first C days and all death
events in the last C days of our data set. We experimented with
C values of 10 and 30 and did not see any significant differences
in the results reported below. We decided to use C = 10.

Fig. 3 shows the number of monthly AS and link births and
deaths in our data set.5 From this figure we note that even after
accounting for dead ASs and links, which should be included
in an Internet AS topology model, the Internet AS graph does
indeed grow incrementally by the addition of new nodes and
links (though there were more link deaths than births in the last
few months of our data set). Tables IV lists the vertex degree
distribution of the new and dead ASs encountered in our data
set. We note that a vast majority of new ASs are born with vertex
degree 1 or 2. The same is true for dead ASs. Hence even though
the data concerning the evolution of the AS map conforms to the
incremental growth assumption, the choice of vertex degrees of
the new ASs follows a distribution that heavily favors degrees 1
and 2, instead of the fixed number m assumed in the BA model
[2]. Since the BA model does not include death events, we first
look only at birth events. We study death events in Section III-G
after considering the relevance of the re-wiring mechanism in
Section III-F.

5The link birth and death numbers do not include links births/deaths associ-
ated with AS births/deaths.

E. On the Preferential Connectivity Assumption

According to the preferential connectivity mechanism under-
lying the BA model, when a new node joins the network, the
probability of its connecting to an existing node (henceforth,
“target node” or “peer”) follows a linear preferential model,
ki/

∑
kj , where ki is the vertex degree of the target node and∑

kj is the total vertex degrees of all nodes in the graph before
the addition of the new node. To check the practical relevance
of this mechanism, we start with a simple but illustrative ex-
periment. This experiment allows for a qualitative comparison
between the actual connectivity preferences seen in the Internet
and those assumed by the BA model.

AS Birth. Starting with the AS map of Nov. 1998, consider
the next AS (node u) that joins the network. Node u joins the
network with initial vertex degree mu. Before we actually let
node u join the network, we simulate the addition of node u
with target AS(s) selected using the linear preferential model.
We record the vertex degrees of the mu target ASs so chosen,
and label them k̂u

i , 1 ≤ i ≤ mu. Next we actually add node u to
the network, record the vertex degrees of its actual target ASs,
and label them ku

i , 1 ≤ i ≤ mu. We repeat the above process
for 1,000 nodes added to the Internet between Nov. 1998 and
May 1999. Fig. 4 plots the ku

i ’s of the 1,000 nodes, and Fig. 5
plots the corresponding k̂u

i ’s. Note that both figures use log-
scale on the y-axis.

From these figures, it is clear that in the real Internet, new
ASs have a much stronger preference to connect to high ver-
tex degree ASs than predicted by the linear preferential model
(compare the density of points at the extreme ranges on the y-
axis of the two figures). It may seem counter-intuitive that the
linear preferential model should prefer nodes with small vertex
degrees. After all, by the linear preferential model, the probabil-
ity of connecting to nodes with large vertex degrees is propor-
tionally higher than the probability of connecting to nodes with
small vertex degrees. There are, however, a much larger number
of nodes with vertex degrees 1 and 2 than there are nodes with
large vertex degrees (see Fig. 2). This explains why, despite the
higher probability of connecting to nodes with large vertex de-
grees, we see a predominance of target nodes with small vertex
degrees under the linear preferential model.
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Fig. 7. A sample AS map.

To turn the qualitative insight gained from Figs. 4 and 5 into a
quantitative statement, we need a metric for analyzing the evo-
lution of connectivity graphs. Here we encounter a problem: the
transition probabilities that describe how the graph evolves from
one state to another are themselves dependent on the graph’s
current state [19].6 To illustrate, when a node joins the network,
what is the probability that it will connect to a node with ver-
tex degree K? The answer depends on how “big” K is at the
time the new node joins relative to the other nodes. Also, once
a new node connects to an existing node of vertex degree K, it
increases the vertex degree of the target node, further compli-
cating the analysis. Such changing AS vertex degree conditions
are reflected in Figs. 4 and 5 in terms of the slightly upward
slanted “lines” that are more apparent for higher degrees, i.e.,
as the network gets bigger, the vertex degrees of the high rank
nodes increases over time.

To deal with this problem more formally, we adopt in this pa-
per the following metric for studying and analyzing connectivity
preferences over time. For each node i, we calculate its degree
ratio Ci = ki/

∑
j kj . Next, we sort all existing nodes of a

given graph in a monotonically increasing order by their ver-
tex degrees (or, equivalently, by their degree ratios Ci). When
a new node u joins a graph, for each target node v that node u
connects to, we record target node v’s cumulative degree ratio
Xv =

∑
i:rank(i)≤rank(v) Ci (where rank(i) is the rank of node

i in the sorted array). We use the following example to illustrate
the calculation of the cumulative degree ratio.

6The use of a Markovian model to describe the AS graph evolution through
time would require a multi-stage Markov chain for each existing AS.

Assume there is a network consisting of 5 nodes: A, B, C,
D and E and their connectivity graph is as shown in the Fig. 7.
A new node F joins the network and connects to node D. The
cumulative degree ratio XD of node D can be calculated as fol-
lows: First, for each existing node i, calculate Ci. In this case,
CA = 1

8 , CB = 1
8 , CC = 1

8 , CD = 2
8 , and CE = 3

8 . Next,
we sort all nodes according to their degrees in increasing or-
der. For nodes with the same degree, we break ties arbitrarily
(e.g., alpha numerically). The sorted result is A,B,C,D,E.
Finally, we calculate target node D’s cumulative degree ratio,
XD =

∑
i:rank(i)≤rank(D) Ci = CA + CB + CC + CD = 5

8 .
We calculated the Xi of all 6,440 AS births in our data set.

Next, we calculate the cumulative distribution of Xi. In other
words, we ask, when a node u connects to its target node i, what
is the value P (x) = Prob[Xi < x], 0 ≤ x ≤ 1?
If a new node chooses its target node v based on linear prefer-
ence, then (Xv, P (Xv)) must lie along the straight line y =
x, for the following reasons. Recall the definition of Xv =∑

i:rank(i)≤rank(v)
ki∑
j

kj

. By this definition, for node i, if

Xi ≤ Xv , node i must appear before node v, or is node
v, in the sorted array. Thus, P (Xv) is the sum of the prob-
abilities that any node i such that rank(i) ≤ rank(v) is
chosen as the target node. By the linear preferential model,
each node i has the probability ki/

∑
j kj to be chosen. Thus

P (Xv) =
∑

i:rank(i)≤rank(v)
ki∑
j

kj

and Xv = P (Xv).

We illustrate this by going back to the example involving
Fig. 7. As previously computed, XD = 5

8 . Then P (XD) =∑
i:rank(i)≤rank(D)

ki∑
j

kj

= CA + CB + CC + CD = 5
8 .

In view of Figs. 4 and 5, which show that new nodes are less
likely to connect to low-degree target nodes than is predicted
by the linear preferential model, we expect to see the empirical
P (Xv) vs. Xv plot to stay well below the diagonal. We can gen-
eralize the metrics above to also check for non-linear preference
model, as follows. For p > 0, set Ci(p) = ki

p∑
j

kj
p

, Xv(p) =
∑

i:rank(i)≤rank(v) Ci(p) and P (p, x) = Prob[Xv(p) ≤ x].
(Hence Ci(1) = Ci, Xv(1) = Xv and P (1, x) = P (x).)

Fig. 6(a) shows the metric P (p, x) of the target nodes of the
6,440 ASs born in our data set, for p=1 and 2. The figure also in-
cludes a plot labeled “Model (p = 1)” of P (1, x) of target nodes
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Fig. 8. Link death/birth correlation in two re-wiring models.

of a network that was grown purely by incremental growth and
linear preferential connectivity to a size comparable to that of
the Internet of Nov. 2000. (Note that the marks on the curves in
the figure serve only to help visual identification of the curves.
We have 6,440 data points for each curve, not a single data
point.) In agreement with our earlier results reported in Figs. 4
and 5, we see that the target nodes’ P (1, x) distribution of the
Internet is more skewed towards large vertex ASs than predicted
by the BA model. The P (2, x) curve illustrates that by simply
changing the value of the parameter p, a range of differently-
shaped P (·, x) are attainable, including some that may yield a
good fit with the BA model (however, see the discussion in Sec-
tion IV).

From the data presented so far, we conclude that while incre-
mental growth by node addition does play a role in the evolution
of the AS map, the vertex degree distribution and peering char-
acteristics of new ASs are more complex than the simple models
used in the BA construction.

Link Birth. In addition to connectivities (links) formed be-
tween a new AS and its target AS(s), new links can also be
formed between existing ASs. We now characterize link births
that are not associated with AS births. There are 13,558 such
link births in our data set. In the BA model, a link birth is mod-
eled by a two-step process: first a node is chosen with proba-
bility 1/N , where N is the number of nodes in the graph, then
a new link is added to connect this node and a peer i chosen
according to the linear preferential model Ci(1).

We consider two cases where ASs decide to connect to
one another: (1) customer ASs purchase Internet access from
provider ASs, and (2) peer ASs agree to exchange traffic be-
tween themselves. Customer ASs tend to be smaller than
provider ASs (in terms of vertex degree, number of routers, ge-
ographic area coverage, traffic carried, etc.) and peers tend to
be of comparable sizes [27]. An instance where we may see a
new connection between existing ASs is when a customer pur-
chases an extra access service, for fault tolerance or capacity
reasons [28]. Another instance could be that an AS grows in
importance and becomes a peer to a clique of other ASs. In
such cases, it is usually the AS with the smaller vertex degree
that initiates a new connection to another AS of a larger vertex
degree. Subsequently, in our characterization of link births, we

group the two vertices associated with a newly born link into the
“Small vertex” and the “Large vertex” groups.

Fig. 6(b) plots the P (1, x) of the vertices of the 13,558 new
links in our data set. The “Both vertices (Internet)” curve plots
the P (1, x) of both vertices as a single distribution. The “Small
vertex (Internet)” curve plots the distribution of the smaller of
the two vertices of the new links, and the “Large vertex (Inter-
net)” curve plots the distribution of the larger of the two vertices.
For comparison with the BA model, we conduct the following
experiment: we add a single link to the Nov. 1998 AS map ac-
cording to the BA model and record the vertex degrees of the
smaller and larger of the two vertices the link connects. We re-
peat the experiment 1,000 times and plot the resulting two dis-
tributions in the same figure (the curves labeled “Small vertex
(Model)” and “Large vertex (Model)”). We note that while the
“Small vertex” distribution under the BA model may be consid-
ered similar to that of the Internet, the “Large vertex” distribu-
tion of the BA model is very different from that of the Internet.

F. On the Relevance of the Re-wiring Mechanism

In addition to incremental growth and preferential connectiv-
ity, the evolution of the graph structure in the BA model is driven
by a third mechanism, namely re-wiring. Re-wiring under the
BA model consists of uniformly selecting m nodes, removing
one of their links, and connecting the node to another existing
node according to the linear preferential connectivity model. In
the Internet, a re-wiring could be approximated by a customer
changing its choice of access provider.

The data on customers changing their ISPs is generally not
available. Hence it is not practical to validate the BA re-wiring
mechanism directly against empirical data. Instead, we ap-
proximate link re-wiring by the following heuristic: if a link
birth happens within 10 days of a link death (before or af-
ter), and one of the two vertices of the dead link is a vertex
of the new link, we consider the link rewired. We call this
the General Re-wiring model. (Recall that by our definition, a
link birth/death precludes link addition/removal associated with
node birth/death.) If we restrict the definition of re-wiring to a
customer AS changing provider, and assume that customer ASs
usually have smaller vertex degree than provider ASs, we can
have a narrower definition of re-wiring: given the two vertices
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Fig. 9. P (1, x) distribution for AS/link death.

of a link, a link is considered rewired only if the AS with the
smaller vertex stays the same in both the link death and link
birth events. We call this the Customer Re-wiring model.

Fig. 8(a) shows the probability that among all the 10,260 link
death events in our data set, one can find a link birth correlated
with the link death 10 days before (-10 on the x-axis) to 10 days
after the death of a link when the General Re-wiring model is
assumed. A correlated link birth occurring before a link death
could be interpreted as a customer not relinquishing its current
connection to the Internet until a new one is set up and stable.
Next, in order to investigate the degree of link death/birth cor-
relation under our Re-wiring models, we perform the following
experiment. For every link death and its associated link birth,
we reposition the existing death event randomly within the pe-
riod when a given anchoring AS is alive. For example, if we
observe that the link between AS1 and AS2 dies on day 0 and
a new link between AS1 and AS3 is born on day 10, we keep
the birth on day 10 and randomly place the death event within
the period when AS1 is alive. Once all such repositionings are
done, we generate the death/birth correlation probability for the
modified data set (line labeled “Random” in Fig. 8). We observe
that in both figures, there is a noticeable correlation beyond ran-
dom coincidences of the birth and death events only for births
on the day or the day before the deaths. In both cases, not more
than 20% of all link deaths can be meaningfully correlated with
a nearby link birth, which strongly suggests that re-wiring may
not be a significant factor in the evolution of the Internet AS
topology.

G. AS/Link Death Events

Even though the incremental growth process of the BA model
does not include the death events of individual AS and link, we
observed in Fig. 3 that such events do occur in the Internet. Par-
allel to our study of AS/link births in Section III-E, we perform
in this section a study on AS/link deaths. There are 1,452 AS
deaths and 10,260 link deaths in our data set. Fig. 9(a) shows
the metric P (1, x) of dead ASs’ peers. Fig. 9(b) shows the met-
ric P (1, x) of dead links’ vertices. 0 to Fig. 6(b), the “Small
vertex (Internet)” curve in Fig. 9(b) plots the distribution of the
smaller of the two vertices of the dead links, and the “Large ver-
tex (Internet)” curve plots the distribution of the larger of the two
vertices. The “Both vertices (Internet)” curve plots the P (1, x)

of both vertices as a single distribution. Given the number of ob-
served AS/link deaths and their non-trivial dynamics illustrated
in Fig. 9, it is unlikely that network growth models that exclude
death events will succeed in adequately describing measured AS
maps.

IV. CONCLUSION: ON THE NEED FOR ALTERNATIVE

MODELS

Recall that the original intent of the BA model (when applied
to the Internet’s AS graph) was to explain the empirically de-
rived power law degree distribution of the AS topology. This
explanation is in terms of the detailed yet simple dynamics of
how connections between AS are established (i.e., incremental
growth, preferential connectivity, and re-wiring). However, we
have demonstrated in Section II that power law degree distri-
butions, while consistent with AS maps that rely solely on the
Oregon data sets (the original maps), are not consistent with the
extended maps that offer a more complete picture of the actual
AS connections. The degree distributions of these extended AS
maps are certainly heavy-tailed or highly-variable in the sense
that the measured vertex degrees typically range over three to
four orders of magnitude, however only their tails can be ex-
pected to conform to a power law. In addition, we concluded
in the previous section that as far as the Oregon-based AS maps
are concerned, the detailed dynamics underlying the BA model-
ing approach does not explain the structure of the vertex degree
distributions of the resulting AS maps.

We are fully aware of the possibility that the original BA
models can be modified in a number of ways (see for exam-
ple [6]). These modifications may not only produce AS maps
with highly variable degree distributions (so as to model more
realistic and complete AS connectivity maps), but also accom-
modate different types of preferential attachment rules (so as
to provide a good fit with historical AS data; e.g., by adjusting
the parameter p in our definition of the metric P (p, x).), etc.
However, any such resulting model would still seek to explain
the highly variable degree distributions in terms of the detailed
dynamics of network growth—just as the original BA model.
Moreover, pursuing such modifications typically means sacri-
ficing simplicity and parsimony for flexibility. Sacrificing parsi-
mony in modeling is essentially self-defeating when aiming for
truly explanatory topology models. A parsimonious model that



can be simply understood has the highest potential of providing
novel insights into how AS connectivity evolves over time and
what basic mechanisms are responsible for shaping the structure
of future topology. While highly parameterized BA-type models
can be expected to fit a particular AS data set very well, it will
be, in general, hopeless to give any physical meaning to all the
parameters that come with such models.

Motivated by the observed discrepancy between actual AS
growth (of the original maps) and the growth dynamics follow-
ing the BA-model, and by the strong correlation between mea-
sured vertex degree and vertex “size” that suggests a possible
economic-based connection [29], we are led to explore alterna-
tive modeling approaches that promise to retain the simplicity
and parsimony of the original BA model but allow for greater
flexibility otherwise. In particular, we look for ways to explain
the observed highly variable vertex degree distributions of ac-
tual AS maps in terms of an alternative set of basic mechanisms
for growing AS-type graph structures. To this end, if the results
presented in Section III can teach us a lesson, these alternative
mechanisms should ideally be flexible enough to account for
non-generic and context-specific design details.

One such alternative approach that moves beyond the
“design-free” BA framework concerns a recently proposed con-
struction due to Carlson and Doyle [30], called HOT (for highly
optimized tolerance). This approach suggests that power laws
in systems optimized by engineering design are due to tradeoffs
between yield, cost of resources, and tolerance to risk. It also
suggests that these tradeoffs lead to highly optimized designs
that perforce allow for a wide range of event sizes, in particu-
lar for occasional extreme sizes. More importantly, Carlson and
Doyle show that characteristic features of HOT systems include
(a) high efficiency, performance, and robustness to designed-
for uncertainties; (b) hyper-sensitivity to design flaws and unan-
ticipated perturbations; (c) non-generic, specialized, structured
configurations; and (d) power laws. This newly proposed frame-
work is in sharp contrast to SOC or self-organized criticality,
which can only claim the last one of these four properties as
its hallmark, but has nevertheless been widely viewed in the
past as the origin for power laws in complex systems.7 The
Carlson-Doyle model demonstrates that by simply adding an el-
ement of “design” to SOC, the characteristics of the underlying
systems completely change, but the power-law relationships are
typically maintained. These properties make the Carlson-Doyle
model very appealing from a networking perspective, because
it seems to overcome, at least in theory, some of the apparent
shortcomings of the BA approach as reported in this paper. At
the same time, while we have demonstrated here how to vali-
date the BA framework against measured AS data, verifying the
causes underlying the HOT mechanism against our data appears
challenging, to say the least.
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