
MuON: Epidemic based Mutual Anonymity
Neelesh Bansod, Ashish Malgi, Byung Kyu Choi and Jean Mayo*

{npbansod, asmalgi, bkchoi, jmayo}@mtu.edu
Department of Computer Science

Michigan Technological University
1400, Townsend Drive, Houghton, MI - 49931

Abstract— A mutually anonymous service hides the identity of
a client from the service provider and vice-versa. Providing mu-
tual anonymity usually requires a large number of participants.
While peer-to-peer (P2P) networks are capable of recruiting a
large number of participants, reliable anonymous communication
in these architectures, with low bandwidth usage, still needs
further investigation.

This paper presents MuON, a protocol to achieve mutual
anonymity in unstructured P2P networks. MuON leverages
epidemic-style data dissemination to deal with the high churn
(changes in system membership) characteristic of unstructured
P2P networks. The results from our security analysis and
simulation show that MuON provides mutual anonymity over
unstructured P2P networks while maintaining predictable laten-
cies, high reliability, and low communication overhead.

I. I NTRODUCTION

Many online applications such as banking, electronic voting,
information sharing and searching etc, need anonymity to
prevent third parties (oradversaries) from gathering infor-
mation related to services and their clients. Most of these
online services have a common model of interaction; a client
(the initiator) sends a request to a node (theresponder) that
provides the service. The responder processes the request, and
sends the corresponding response to the initiator. Based on this
model of interactions, different types of anonymity [23, 26, 39]
can be provided to applications: initiator anonymity, respon-
der anonymity, mutual anonymity and unlinkability.Initiator
anonymityhides the identity of the initiator from the responder
and adversary.Responder anonymityhides the identity of the
responder from the initiator and adversary.Mutual anonymity
provides both initiator anonymity and responder anonymity.
Unlinkability of initiator and responder means that the initiator
and responder cannot be identified as communicating with
each other, even though they can be identified as participating
in some communication.

Different approaches have successfully achieved various
forms of anonymity. In the simplest approach, a proxy is
used for communication between initiator and responder [1,
14]. However, this system fails if the proxy itself reveals
the identities of the communicating parties. To overcome
this single point of failure, most anonymity protocols [3,
12, 13, 25, 26, 40] provide anonymous communication using
indirection; messages from the sender (initiator/responder) are

*The fourth author was supported in part by NSF CAREER grant CCR-
9984682

routed through the intermediate relay nodes till they reach
the final destination (responder/initiator). Some anonymity
protocols [31, 33, 34] multicast messages to a large group of
nodes to provide anonymous communication. It is important
to note that in both approaches, the anonymity in the system
improves as the number of participant nodes increases.

Experiences with P2P systems indicate the ability of these
architectures to attract a large number of participants. There
have been anonymity protocols that use different kinds of
P2P systems such as structured P2P systems [40], IP layer
P2P systems [13] and hybrid P2P systems [39] for providing
anonymity. An unstructured P2P network does not impose a
structure on its participant nodes and thus has several desirable
characteristics such as administrative ease, ease of deployment
and self-organization. Unstructured P2P networks however,
pose significant challenges for anonymous communication
protocols. An example of this kind of network is the Gnutella
file sharing system, which is known to consume high band-
width [28]. A study by Saroiu et al. [30] has shown that P2P
systems exhibit high churn (changes in system membership);
peers frequently leave/join the network and most peers are
connected to the overlay for a short period of time. Similarly
the nodes within the P2P network cannot be trusted by the
anonymity protocol. These peers may attempt to tamper with
messages, masquerade as the responder, drop messages that
they are supposed to forward, or subvert the protocol by any
other means. The peers within the network could also collude
to violate the anonymity guarantees.

In this paper, we present MuON, a protocol for mutual
anonymity and unlinkability over unstructured P2P (overlay)
networks. The key contribution is its epidemic-style [6, 18, 36]
message sending protocol. Our simulation results show that
it achieves anonymous communication with high reliability
while maintaining low latencies and low overhead.

The paper is organized as follows: Section II discusses the
goals of MuON. Section III summarizes the prior approaches
for anonymity and introduces epidemic protocols. Section IV
describes MuON in detail, followed by the anonymity and
performance evaluations in section V. Finally, section VI
summarizes the contributions of MuON and future work.

II. GOALS OF MUON

The main motivation of MuON is to strike a balance be-
tween performance and anonymity in a dynamic unstructured

1

P2P network. The main goals are described below:
Mutual Anonymity: An initiator sends a request for a

service without knowing which node actually provides the
service. Likewise, the responder sends responses without
knowing the identity of the initiator.

Unlinkability: The identities of the communicating parties
(initiators and responders) are hidden from the adversaries.

Bounded Latencies:Communication latency is bounded.
High Reliability: The messages sent by the initiator to the

responder and vice-versa are delivered reliably.
Communication Overhead: The communication overhead

incurred by each peer within the P2P network should be low.
Scalability: Metrics like reliability, anonymity, communi-

cation latency and overhead should scale well with the size of
the P2P network and the churn within the network.

Message Integrity and Confidentiality: Messages cannot
be changed in transit; requests sent by an initiator can be read
only by the corresponding responder; responses can be read
only by the initiator, which sent the corresponding request;
and intermediate nodes cannot masquerade as responders.

III. R ELATED WORK AND MOTIVATION

This section reviews previous approaches that provide dif-
ferent kinds of anonymity over various network architectures.

A. Anonymity by Mixes

One of the earliest proposed approaches for anonymous
communication is Chaum’sMix-Net [7], which is the basis
of subsequent systems likeBabel [16] and Mixminion [10].
These approaches hide the communication between sender
and receiver by encrypting messages in layers of public key
cryptography. The messages are relayed through a group of
dedicated message relays called ”mixes”. Each mix decrypts
the messages, delays, and reorders the message before relaying
it to another mix.

Approaches based on mix networks achieve strong
anonymity guarantees at the cost of latency. While they
provide anonymity against powerful global adversaries, the
random delaying within the mix network results in unbounded
and high latencies unsuitable for interactive applications.

B. Anonymity by Proxy

Several systems use a proxy to provide anonymity. Exam-
ples includeAnonymizer [1] and Lucent Personalized Web
Assistant [14] which use an intermediate proxy to provide
anonymity to users. LikewisePRA: Proxy for Responder
Anonymity [31] uses a proxy to provide responder anonymity,
while APFS Unicast [31] uses an intermediate proxy and
onion routing to provide mutual anonymity. Proxy based
systems place a great deal of trust on the proxy. Thus they are
vulnerable to failure if the proxy is compromised and reveals
the identity of the communicating parties.

C. Publisher Anonymity

Freenet [9] and FreeHaven [12] provide anonymous in-
formation storage and retrieval. The target applications of

these protocols differ from those of MuON; FreeNet and
FreeHaven are used for publishing and accessing documents
anonymously, while MuON is used for anonymous communi-
cation in applications with online communicating parties.

D. Anonymity by Single-Path Forwarding

Many protocols provide anonymous communication by for-
warding messages along a single anonymous path, formed
through the group of nodes within the infrastructure. This
anonymous path can be specifically created, or is formed by
random forwarding.

Onion Routing [25] provides anonymous communication
using a dedicated set of message relays called ”onion routers”.
The sender first selects a path from the set of onion routers.
The data is then wrapped within encrypted layers, forming
a unit called theonion. In the onion, the innermost layer of
encryption is performed by the encryption key of the path’s
last hop, while the outermost layer uses the encryption key of
the path’s first hop. The onion routers co-operate and forward
the onion from the sender to the destination.

Tor [12] is the second generation Onion Routing [25]
protocol. It uses a modified form of Onion Routing to provide
initiator anonymity, and uses rendezvous points to provide
responder anonymity.

Xiao et al. [39] propose two protocols for mutual anonymity
in hybrid P2P networks. These protocols, namedCenter-
Directing and Label-Switching, use trusted third parties to
provide anonymity. They also proposedShortcut-Responding
[39], which combines onion routing and broadcasting to pro-
vide mutual anonymity within unstructured P2P networks.

Tarzan [13] is an anonymous IP layer P2P system that
provides initiator anonymity. Initiators create tunnels through
the overlay by distributing session keys. The data is then
passed through this tunnel using layered encryption/decryption
(analogous to onion routing).

TAP [40] provides initiator anonymity in dynamic struc-
tured P2P networks by building replicated tunnels. The repli-
cated tunnels enable the protocol to combat network churn.

Crowds [26] provides initiator anonymity using random for-
warding. The initiator sends the (suitably encrypted) message
to a randomly chosen node in the network calledjondo. Each
jondo randomly decides to either send the data to the responder
or to forward it to another jondo.

In networks with high churn (nodes frequently join and
leave the P2P network), approaches that utilize single anony-
mous paths are bound to suffer from path losses. Consider an
anonymous path of lengthn nodes. Ifp is the probability of
a node leaving the overlay, then a given path is valid with a
probability of (1−p)n. With increasing path lengths (increas-
ing n) and increasing churn within the network (increasing
p), the probability that a given path is valid diminishes.
Hence approaches using a single-path will incur with greater
probability, the additional overhead of detecting and rebuilding
failed paths. Providing this kind of fault tolerance will likely
be a high overhead operation and has not been extensively
explored in the context of maintaining anonymity guarantees.

2

p

q

r

s

M0

Gossip message

Message ‘pull’

t2t0 t1 t3 t4 t5 t6

Fig. 1. Epidemic protocols

E. Anonymity by Group Communication

Many systems use group communication primitives like
multicasting and flooding to achieve anonymity.

P5, Peer-to-Peer Personal Privacy Protocol[33] proposes
a novel approach for mutual anonymity using broadcast chan-
nels. It defines a logical hierarchy of broadcast groups, and
the nodes within the P2P network join one or more of these
groups when entering the system.

GAP [3] (part of GNUnet) uses controlled flooding to
achieve initiator and responder anonymity in a P2P network.

APFS (Anonymous Peer-to-Peer File Sharing)[31] in-
cludesAPFS Multicast, a protocol that uses multicasting to
provide mutual anonymity within P2P file sharing applications.

Hordes [34] provides initiator anonymity using multicast-
ing. A multicast group is formed by all the initiator nodes.
Initiators send requests to responders using Crowds or Onion
routing, while the responder multicasts the response to the
group of initiators.

Protocols that depend on group communication primitives
like multicasting are ideally suited for networks with high
churn, because the departure of a few nodes does not sub-
stantially impact the communication between the sender and
receiver. Previous work [34] also indicates that the use of
multicasting helps reduce communication latencies. However,
the lack of widespread deployment of IP multicast infrastruc-
ture inhibits deployment of protocols based on this type of
multicast [31, 33]. GAP [3] takes a higher level approach,
but achieves reliability by flooding, which may not scale well
in large unstructured P2P networks. Hordes [34] uses single-
path forwarding to send requests, and potentially incurs the
additional overhead of detecting and rebuilding failed paths.

F. Epidemic Protocols

Epidemic (or gossip) protocols [11] are a well-studied class
of protocols for low-cost reliable data dissemination within
groups. They have been shown to be much more efficient
than flooding based approaches [24, 35]. Epidemic protocols
provide higher reliability and scalability while using lower
bandwidth [18], when compared to other reliable multicast
protocols. They provide a bimodal guarantee of reliability [6];
the message reaches all members of the group with a high
probability, and the probability that it will reach to just a few

members of the group is very low. Studies have shown that the
time required to disseminate data to the entire group islog(N),
where N is the number of nodes within the group. Due to
these desirable characteristics, MuON uses an epidemic-style
protocol for data dissemination.

A simplified gossip protocol is depicted in Figure 1. Each
node runs several rounds of the gossip protocol. In each round,
the node selects a random node as itsgossip target. The node
sends the gossip target(s) agossip messagecontaining a list
of message identifiers that it has heard of (represented by
dotted lines between nodes). If the list contains a message
identifier which the gossip target has not received, the gossip
target will request the node to send it (represented by solid
lines between nodes). Three important parameters that impact
gossip protocols areFanOut, Tinterval andGC. FanOut is
the number of gossip targets used in each round (FanOut is
two in the figure).Tinterval is the time between successive
protocol rounds. (In the figure, nodep is seen to start gossip
rounds at timet1 andt6, resulting inTinterval = t6−t1). GC
(Gossip Count) determines the number of rounds a message
is gossiped by a node. These parameters determine the speed
and efficiency of message sending and have been rigorously
studied by Birman et al [6].

IV. M UON

In this section, we describe the system model and assump-
tions for deploying MuON. We then describe the data dis-
semination (message sending) protocol along with the notation
used. The message sending protocol is used in both directions,
from initiator to responder and vice-versa. Finally, we describe
how the message sending protocol is used for communication
between the initiator and responder.

A. System Model

MuON operates over an unstructured P2P network. LetN
be the number of nodes within the overlay (referred to as the
overlay size). We assume that nodes within the overlay know
at leastg = log(N) other members of the overlay. The mem-
bership list for epidemic style protocols can be maintained by
means of services such as SCAMP [15] and ”Peer Sampling
Service” [19]. MuON assumes that all initiators and responders
are members of the P2P network. All protocol messages use
low-cost unreliable transport (UDP) for communication.

Services are identified by aservice identifier. To send
a request for a particular service, the initiator obtains the
public key corresponding to the service. This public key is
used for initiating the communication between the initiator
and responder. Thus the identity of the responder node that
provides the service, is not revealed to the initiator. The
message sending protocol of MuON ensures that initiator and
responder anonymity and unlinkability are maintained. The
use of public and session keys ensure that data integrity and
confidentiality are maintained. The public keys of MuON are
not tied to any specific algorithm; for example incomparable
public keys [38] could be used.

The protocol assumes that there exists some mechanism

3

A

B

MESSAGE TRANSFER

MESSAGE HEADERS

P

A,MSG

A,MSG

X

Y

Node X communicating to Y.

X,MSG

X, MSG

B,MSG

Fig. 2. Data Dissemination in MuON

that provides public keys corresponding to the service iden-
tifier. The system places some trust on this mechanism; the
mechanism provides correct public keys only and it does not
reveal the identity of the node corresponding to the public
key. For convenience, the protocol description assumes the
presence of a trusted PKI (Public Key Infrastructure), though
an initiator could obtain the public keys out-of-band. It is
interesting to note that the communication between the PKI
and the initiator itself must be done anonymously. However, it
is easy to conceive the PKI as a service within MuON itself,
whose public key is well known and distributed out-of-band.

B. Notation

Before looking into the details of the MuON, we first look
at the notation used within the protocol.

ksession Symmetric session key
k+

A , k−A Public and private keys of nodeA respectively
{data}ks data encrypted/signed using keyks

(ks is public, private or session key)
r1 Nonce
H(data) Cryptographic hash computed overdata

(e.g. SHA-1)
self Identity of the node executing the protocol

(e.g. IP-address)
pinter Intermediate probability, parameter controlling

anonymity and performance of MuON
Tinterval Time interval between successive protocol rounds
FanOut Number of gossip targets per protocol round
GC Number of protocol rounds a message is gossiped
MSG Data message (a request or a response message)
MSGHDR The header corresponding toMSG. Format is

{currOwner, hdr, H(hdr)}, where currOwner is
the node that has the correspondingMSGand hdr
depends on type ofMSG(refer to section IV-D).

C. Message Sending in MuON

The message sending protocol of MuON is unidirectional;
it is used to send requests from an initiator to a responder
and then again to send a response from the responder to the
initiator. Let MSGdenote the encapsulated data to be sent
(thusMSGmay be a request or a response). MuON generates

/* Adding a header (MSGHDR) to theheaderBuffer*/
addheader (MSG HDR):
begin

slot = free slot in theheaderBuffer
headerBuffer[slot].MSG HDR = MSG HDR
headerBuffer[slot].gossipCount = 0

end

/* Add message (MSG) and its header (MSGHDR) */
addmessage (MSG, MSG HDR):
begin

addheader(MSG HDR)
Add MSG to themessageBuffer
Associate MSG with H(hdr) contained in MSGHDR

end

/* Sending message MSG with headerhdr. The node
* sending MSG computes the message’shdr (described
* in later sections).self indicates the identity of the node
* that executes this method */
sendMessage (hdr, MSG):
begin

MSG HDR={self, hdr, H(hdr)}
addmessage(MSG, MSGHDR)

end

Algorithm 1 : Common procedures used by algorithms

/* Runs everyTinterval units of time */
gossipRound :
gossipMesssage= all MSG HDR ∈ headerBuffer
for i=0 to FanOut do

Randomly select a peerni from the overlay
SendgossipMessageto ni

for every used slot in headerBufferdo
headerBuffer[slot].gossipCount++
if headerBuffer[slot].gossipCount> GC then

FreeheaderBuffer[slot] by removing MSGHDR from
headerBufferand removing its corresponding MSG
from messageBuffer.

Algorithm 2 : Gossip round

a header, denotedMSGHDR, that corresponds toMSG. We
assume1 that the size ofMSGHDR is much less thanMSG,
since MSGHDR contains only the required identifiers and
cryptographic keys (details are in section IV-D).

The basic operation of the protocol is depicted in Figure 2,
which shows node X sendingMSGto node Y. MuON uses an
epidemic protocol to disseminateMSGHDRto all nodes within
the P2P network, while the largerMSGis disseminated to only
a few nodes within the network (shaded within Figure 2). As
explained in detail later, the number of nodes which receive
MSG depends on the value ofpinter. The protocol ensures
that the responder always getsMSG. As the largerMSGis
not sent to the entire network, MuON substantially reduces
the bandwidth usage. Also, since multiple nodes within the

1This assumption holds true in applications with large responses (e.g. file-
transfer and web-browsing). In these applications, MuON achieves substantial
bandwidth savings compared to other group communication based anonymity
protocols. We anticipate that MuON will provide a bandwidth reduction for
applications with small data messages (e.g. e-voting) that require reliable
delivery, though these applications are not evaluated in this paper.

4

/* When node B receivesgossipMessage*/
onRecvGossipMessage :
foreach MSGHDR ∈ gossipMessagedo

Let MSG HDR = {currOwner, hdr, H(hdr)}
if H(hdr) ∈ headerBufferthen return
if hdr can be decipheredthen

/* This implies that MSGHDR corresponds to a
* MSG destined for B
*/
RequestcurrOwner to send MSG associated with
H(hdr)
when MSG arrivesthen
begin

Deliver MSG to application
if true with probabilitypinter then

/* Setting self as currOwner */
MSG HDR = {B, hdr, H(hdr)}
addmessage(MSG, MSGHDR)

else
addheader(MSG HDR)

end
else

if true with probabilitypinter then
RequestcurrOwner to send MSG associated with
H(hdr)
when MSG arrivesthen
begin

/* Setting self as currOwner */
MSG HDR = {B, hdr, H(hdr)}
addmessage(MSG, MSGHDR)

end
else

addheader(MSG HDR)
end

Algorithm 3 : Receiving a gossip message

network receiveMSG(all the shaded nodes), multiple nodes
are potential receivers and senders ofMSG, giving MuON
its anonymity guarantees. MuON derives its properties of
reliability and bounded latencies from its epidemic nature.

Every node running MuON maintains two buffers; one to
store the message headers (calledheaderBuffer) and the other
to store the corresponding messages (calledmessageBuffer).
Every node tracks the number of protocol rounds each header
has been gossiped (called thegossipCount). The details for
handling these buffers are described in Algorithm 1.

Algorithm 2 explains the protocol executed by each node
after everyTinterval units of time. This algorithm describes an
epidemic protocol for disseminating the headers. Each node
selectsFanOut random nodes from the group as gossip
targets and sends them a list with each message header
MSGHDRcurrently within headerBuffer. As given in algo-
rithm 3, wheneverA gets the message,A tries to decrypt2 the
message. IfA can decrypt the message, it indicates that the
message was intended forA and thusA contactscurrOwner
and pulls the message. In this caseA also gossips with its
neighbors that it has the message to send. Thus the responder

2If the decrypted message contains an expected value such as a known
identifier or public key, the node can conclude ”successful” decryption

in MuON behaves exactly the same as any other node in the
network (with the exception that it always pulls the message).
If A cannot decrypt the message thenA performs one of
two actions: it may just add the header to its header buffer
or with some probabilitypinter it may go back and get the
corresponding MSG fromB. In the first case,A gossips
with its neighbors thatB currently has the message. In the
second case, whenA gets the MSG fromB, it changes the
currOwner field of MSGHDRto A. Thus whenA gossips
the header, it will indicate itself as the owner of the message.
With this property, MuON achieves its anonymity guarantees
as there are potentially many owners of the same message.

D. Initiator and Responder Communication

While the message sending protocol of MuON helps
achieve anonymity, cryptographic measures are required to
ensure message integrity and confidentiality. This subsection
describes how the dissemination protocol is used by initiators
and responders for secure anonymous communication.

Sending a request: The following steps are performed,
when an initiatorI sends a request for serviceS. Let data
represent information contained in the request message and
id be an application specific message identifier.

1) I generates a symmetric session keyksession, which is
used to encrypt all data messages.

2) I generates a noncer1, which is used to correlate
responses with this request.

3) Using the PKI,I obtains the public keyk+
s associated

with the serviceS.
4) The MSGis generated as{r1, id, data}ksession.
5) I creates a headerhdr, corresponding toMSGashdr =

{r1, ksession, k+
I , {H(D)}k−I }k+

s where
D = {r1, ksession, k+

I ,MSG}.
6) I now invokes sendMessage(hdr,MSG) (Algorithm 1).

Responding to a request:Algorithm 3 ultimately delivers
MSGHDRand MSGto the peer providing the serviceS. Let
some nodeR provide the serviceS. SupposeR receiveshdr
and its correspondingMSG. R proceeds with the following
steps.

1) R decryptshdr usingk−s , to obtainksession, r1 and the
initiator’s public keyk+

I . R now runs integrity checks
with the cryptographic hash.

2) Using ksession, R decryptsMSGto recover the request.
3) Let response be the corresponding reply, which the

responderR needs to send toI. R createsMSG=
{r1, id, reponse}ksession. Hereksession andr1 are val-
ues sent by the initiator and recovered byR in step 1.

4) R creates a headerhdr corresponding to the response
ashdr = {r1, {H(D)}k−S }k+

I , whereD = {r1,MSG}.
5) R now invokes sendMessage(hdr,MSG) (Algorithm 1).

V. EVALUATION

In this section, we evaluate the performance, anonymity and
other security guarantees of MuON. We first study the impact

5

of overlay size and churn on the various performance metrics
of MuON. We then evaluate the anonymity and other security
guarantees of the protocol.

A. Performance Evaluation

Measurement studies of unstructured P2P networks [5, 30,
32] indicate that these systems exhibit dynamic membership,
because peers alternately join and leave the network. Peers
participate in the protocol only during the time between
joining and leaving the network. This time is called the
session timeand the resultant dynamism is called thenetwork
churn. The network churn is related to the average session
time of the peers within the network. As the average session
time decreases, the membership of the P2P network changes
at a faster rate and is said to exhibit a higher churn [21, 27].

Prior experiences [8, 21, 27] indicate that network churn
impacts the performance of protocols over P2P networks.
Hence we evaluate MuON by simulating the protocol over
dynamic unstructured P2P networks of varying sizes and
varying churn. We model network churn using an approach
similar to that described by Liben-Nowell et al. [22]. This
model has also been used for evaluating distributed hash
tables over P2P networks [21, 27]. The peers within the
network are assigned exponentially distributed session times.
When a peer reaches the end of its session time, it leaves
the network. Prior studies [17] have shown that the average
session time (amount of churn) within a network depends on
the application. Since MuON is not specific to any application,
we simulate networks with varying churn (session time).

We simulate MuON usingPeerSim [2, 20], a P2P
simulator designed specifically for epidemic protocols. The
simulator executes the protocol in a series of cycles, where the
time interval between each cycle is assumed to be sufficient
for unidirectional message transmission. The loss rate in a
direct UDP communication between any pair of nodes is 5%.

In our simulation model, a network with churn 0 is a
static network, which does not change during the run of the
simulation. At churn 0, the average session time was chosen
as 150 cycles (a factor of 10 over the maximum time for one
run of the protocol), to enable simulation of several rounds
of MuON simultaneously. An increase of0.1 in network
churn decreases the average session time of the nodes by a
factor of 1

10 . When a node leaves the network, it is replaced
by a new node, thus keeping the overlay size constant. This
helps us to understand the impact of overlay size and churn
independently.

The simulations are used to study the impact of increasing
overlay size and churn on the various protocol metrics.
In the simulation FanOut and GC are maintained at
log2(overlay size) and Tinterval is maintained at1 cycle.
These parameters are common to all epidemic protocols
and do not impact anonymity guarantees. Their impact on
performance is expected to be similar to that determined by
previous studies [6] and is currently under evaluation. The
impact of intermediate probabilitypinter is studied in section
V-B. Unless specified, the value ofpinter is assumed to be0.5.

 0

 0.2

 0.4

 0.6

 0.8

 1

co
lo

ur
 g

ra
di

en
t

 2000
 4000

 6000
 8000

 10000
 12000

 14000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Delivary Ratio

Delivary ratio of MuON

Overlay Size
Churn

Delivary Ratio

Fig. 3. Reliability of MuON

 0

 5

 10

 15

 20

 25

 30

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

C
yc

le
s

Overlay Size

Churn 0

 0

 5

 10

 15

 20

 25

 30

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

C
yc

le
s

Overlay Size

Churn 0.2

 0

 5

 10

 15

 20

 25

 30

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

C
yc

le
s

Overlay Size

Churn 0.5

 0

 5

 10

 15

 20

 25

 30

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

C
yc

le
s

Overlay Size

Churn 0.9

Fig. 4. Number of cycles for message delivery

Reliability The reliability of MuON is measured by
the delivery ratio achieved in networks of varying sizes
and churn. The delivery ratio is the fraction of the sent
requests that were ultimately delivered at the final destination.

Thus delivaryratio = number of requests delivered
number of requests sent. When

delivery ratio is one, it indicates that all requests that were
sent were eventually delivered at their destination, thus
indicating reliable communication.

Figure 3 shows the delivery ratio for networks with varying
sizes and churn. It can be seen that MuON maintains a high
delivery ratio of almost one, independent of the overlay size
and churn. This high reliability indicates its suitability for
highly dynamic P2P networks.

Bounded Latency One of the goals of MuON is to
achieve communication within a predictably bounded
time interval. This characteristic is important from the
application’s point of view; shorter latencies are important for
application interactivity while bounded latencies are needed
by applications to set timeouts and detect messages losses.

6

 0
 2
 4
 6
 8

 10
 12
 14
 16

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

M
es

sa
ge

s/
N

od
e

Overlay Size

Churn 0

Avg. Header Messages
Avg. Data Messages

 0
 1
 2
 3
 4
 5
 6
 7
 8

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

M
es

sa
ge

s/
N

od
e

Overlay Size

Churn 0.2

Avg. Header Messages
Avg. Data Messages

 0

 1

 2

 3

 4

 5

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

M
es

sa
ge

s/
N

od
e

Overlay Size

Churn 0.5

Avg. Header Messages
Avg. Data Messages

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

M
es

sa
ge

s/
N

od
e

Overlay Size

Churn 0.9

Avg. Header Messages
Avg. Data Messages

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

M
es

sa
ge

s/
N

od
e

Overlay Size

Churn 0.9

Avg. Header Messages
Avg. Data Messages

Fig. 5. Average number of messages processed on each node

Since MuON operates over an overlay network, we measure
the latency in terms of number of protocol cycles required
for the message to be delivered at its destination.

Figure 4 shows the average number of cycles required
for messages to be delivered; the bars indicate the variation
in the delivery latency. It can be seen that the delivery
latency is almost constant irrespective of the overlay size and
churn, indicating that the latencies provided by MuON are
predictable and bounded.

Resource Consumption When a peer joins MuON,
it has to contribute some of its resources to help forward the
messages from other peers. Hence it is important to study the
amount of resources a peer has to expend, to help other peers
achieve anonymity.

In MuON, a peer needs resources to send, encrypt, decrypt
and store messages. In general, the resources consumed by
a node are directly proportional to the number of messages
(header as well as data) it has to process. Figure 5 shows
the average number of headers and data messages that
are processed on each peer, whenever some peer sends an
anonymous message. It can be seen that irrespective of the
overlay size and churn, the number of header messages
processed is bounded and relatively low. The graph also
indicates that each peer has to process very few data
messages. The header messages are small in size and thus the
processing overhead for each header, storage and bandwidth
is low. The protocol uses private/public key encryption for
small headers and faster symmetric cryptography for large
data messages, to reduce the overhead due to encryption [29].

Comparative Bandwidth Use MuON’s message sending
protocol has been designed to use low bandwidth as com-
pared to previous multicast-based anonymity protocols. Let
HDRsize and DATAsize be the size of header and data
messages respectively andN be the number of nodes within
the overlay. Consider the bandwidth consumed when one data

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 2000 4000 6000 8000 10000 12000 14000

N
um

be
r

of
 D

at
a

M
es

sa
ge

s

Overlay Size

Multicast
MuON, pinter=0.8
MuON, pinter=0.5
MuON, pinter=0.3

Fig. 6. Comparative Bandwidth Use (Churn 0)

message is sent anonymously. A multicast-based anonymity
protocol will multicast this message toN nodes. Hence
the bandwidth consumed will be at leastN ∗ DATAsize.
Note that this is a conservative estimate, since it ignores the
bandwidth consumed by control messages and data message
re-transmissions required in the presence of network churn. On
the other hand, MuON disseminates the data message to only
a subset of nodes within the overlay, ensuring that the final
destination is a member of this subset. Letβ be the size of the
subset of nodes that receive the message. The bandwidth con-
sumed in MuON isk∗N ∗HDRsize+β∗DATAsize, wherek
is the number of headers processed by each node. Since Figure
5 indicates that the value ofk is low andHDRsize is small3,
we approximate the bandwidth consumed asβ ∗DATAsize.
The value ofβ depends on the intermediate probabilitypinter.
We generated figure 6 by simulation, which indicates the value
of β with values ofpinter of 0.3, 0.5 and 0.8. The value ofN
is also shown for clarity. It can be seen that the value ofβ is
always lower thanN , indicating that MuON would use lower
bandwidth compared to other multicast-based approaches. It is
also interesting to note that as the value ofpinter decreases,
the bandwidth consumption decreases.

Scalability An important characteristic that is evident from
the results presented above, is the scalability of MuON. The
protocol’s reliability, latency bounds and resource consump-
tion are almost constant irrespective of the overlay size and
churn.

B. Anonymity Guarantees

In this section, we first discuss how MuON achieves mutual
anonymity and the parameters that impact it. We then evaluate
the anonymity guarantees by describing the protocol behavior
under various attacks from the adversary.

3Considering 128 bit cryptographic hash, 128 bit cryptographic keys, 32
bit IP addresses and 32 bit nonce, the maximum size ofhdr is 416 bits and
HDRsize = 576 bits (72 bytes). If the data being transferred is a 1 MB
media file thenDATAsize = 1048576 bytes. For an overlay of size10, 000
at churn 0,k = 12 from figure 5 andβ = 3000 from figure 6. Hence the
volume of MuON header messages is8437.5KB and the volume of MuON
data messages is3072000KB.

7

Mutual Anonymity in MuON Similar to anonymity
protocols that use multicasting [31] or broadcasting [33],
MuON achieves mutual anonymity on the virtue that several
intermediate peers receive the messages. When an intermediate
node receives aMSG, it gossips the correspondingMSGHDR
with itself as the owner. From an observer’s perspective, any
node claiming to be the current owner could be the actual
sender of the message. Similarly, when an intermediate node
receivesMSGHDR, it pulls the correspondingMSGwith a
probability of pinter. Thus from the observer’s perspective,
any intermediate node that eventually receives theMSG
could potentially be the receiver. Thus in the protocol, an
observer (initiator, responder or intermediate nodes) cannot
differentiate the initiator and responder from the other peers.
The use of public keys also enables the initiator and responder
to communicate without knowing the identity of each other.
Thus mutual anonymity and unlinkability is achieved.

Impact of Intermediate Probability The degree of
anonymity provided by multicast based anonymity protocols
depends on the number of nodes that have an equiprobable
chance of playing a certain role (initiator/responder). LetS
(called theanonymity set) denote the set of nodes that have
an equiprobable chance of being the initiator/responder in the
anonymity system. Shields et al. [34] show that the degree of
anonymity provided by the protocol is1− 1

|S| .
In MuON, for a given communicating pair of initiator and

responder, any node that receivesMSGhas an equiprobable
chance of being the initiator or responder. Hence the
anonymity set is the set containing all nodes that receive
MSG. Using simulations, we measured the size of the
anonymity set for a givenMSG, when it is delivered at its
destination. Figure 7 shows the average size of the anonymity
set expressed as percentage of nodes within the overlay that
received a givenMSG. It can be seen that the anonymity
set increases with increasing values ofpinter. However, for
a given value ofpinter, the anonymity set remains fairly
constant independent of the churn within the network. This
indicates that the degree of anonymity provided by MuON is
independent of the churn of the network.

The anonymity set (and hence the degree of anonymity
provided by MuON) and the bandwidth consumed (Figure 6)
increase as the value ofpinter increases. Thus whenpinter

is 1, the protocol would provide the maximum degree of
anonymity. However, the protocol will perform a multicast
and thus the bandwidth consumption would be maximized.
On the other hand, whenpinter = 0 the protocol performs a
unicast, resulting in minimum anonymity and the bandwidth
consumed would be minimized. Thuspinter represents a
tradeoff4 within MuON between performance and anonymity.

4The degree of anonymity decreases gradually withpinter . Consider a
network of 10,000 nodes with churn 0. Ifpinter = 1 then |S| = 10, 000
and degree of anonymity is0.9999. From figure 7, ifpinter = 0.8 then
|S| = 0.50 ∗ 10, 000 and degree of anonymity is0.9998.

 0

 5

 10

 15

 20

 25

co
lo

ur
 g

ra
di

en
t

 2000
 4000

 6000
 8000

 10000
 12000

 14000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 20

 40

 60

 80

 100

Anonymity Set
 (% of overlay size)

Anonymity Set with Intermediate Probability 0.3

Anonymity Set

Overlay Size
Churn

Anonymity Set
 (% of overlay size)

 0
 5
 10
 15
 20
 25
 30
 35
 40

co
lo

ur
 g

ra
di

en
t

 2000
 4000

 6000
 8000

 10000
 12000

 14000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 20

 40

 60

 80

 100

Anonymity Set
 (% of overlay size)

Anonymity Set with Intermediate Probability 0.5

Anonymity Set

Overlay Size
Churn

Anonymity Set
 (% of overlay size)

 0

 10

 20

 30

 40

 50

 60

co
lo

ur
 g

ra
di

en
t

 2000
 4000

 6000
 8000

 10000
 12000

 14000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 20

 40

 60

 80

 100

Anonymity Set
 (% of overlay size)

Anonymity Set with Intermediate Probability 0.8

Anonymity Set

Overlay Size
Churn

Anonymity Set
 (% of overlay size)

Fig. 7. Impact of Intermediate Probability

Attacks by Adversary Anonymity protocols are susceptible
to several possible attacks. However, the successful completion
of these attacks may require the adversary to utilize varying
amounts of resources. To evaluate the anonymity guarantees
of MuON, we describe various attacks and describe MuON’s
behavior under attack. It can be seen that though some attacks
are possible against MuON, the resources required by the
adversary to successfully complete the attack are substantial.

Local eavesdropper:A local eavesdropper is an adversary
that is able to monitor all communications sent to or received
from one particular protocol participant. This adversary tries to
detect the identity of communicating parties by recording and
comparing all incoming and outgoing messages of a particular
node. In MuON a local eavesdropper on an intermediate
node, cannot confirm the identities of the communicating
parties, even if the message and its header are received by the

8

intermediate node. This is because the header and message
do not contain any form of identification of initiator and
responder.

Collusion Attack:In a collusion attack, nodes within the
system collaborate to identify the communicating entities. It
has been seen that the degree of anonymity in MuON is1− 1

|S|
whereS is the anonymity set. This implies that as long as a
single intermediate node within the anonymity set does not
collaborate, it is hard for colluding nodes to differentiate with
certainty, the initiator, responder and the honest intermediate
nodes from one another. However, if all|S| nodes within the
anonymity set collaborate, the degree of anonymity provided
by MuON reduces to0 and the identities of the communicating
parties can be revealed. However, since the anonymity set
changes for everyMSGexchanged between the initiator and
responder, all nodes within the network must collaborate to
launch this attack successfully.

Timing attack:In a timing attack, the adversary (behaving as
an initiator) attempts to identify the responder by analyzing the
round trip time (RTT) of a request, since short RTT indicates
that the responder is nearby. In MuON since the messages are
transferred over the overlay network, RTT measurements do
not reflect actual network locations. Thus launching a timing
attack is difficult.

An adversary can launch a variant of the timing attack
against MuON, by identifing the initiator as the first node to
gossip a particularMSG. To launch this attack, the adversary
would have to trace outgoing messages of every node within
the network, to identify a particular node as the first node to
gossip a message. However in this attack, the adversary cannot
identify the responder, since the responder behaves like an
intermediate node and continues to gossip theMSG.

Traceback attacks:There are two kinds of traceback attacks:
passive tracebackandactive traceback. In a passive traceback
attack, the adversary examines the stored routing state of
the peers within the network to identify the path(s) between
initiator and responder. To launch a passive traceback against
MuON, the adversary needs to look at the application level
message buffers at every node within the network. However,
since the messages are periodically removed from the buffers,
to perform a successful traceback the adversary must collect
the information before it is removed.

In an active traceback attack, the adversary has control of
the network infrastructure and is able to follow an active and
continuing stream of packets back through the network to their
point of origin. In MuON, such an adversary can identify the
sender of the message (as it is the starting point of the message
paths). However, the recipient is not revealed (since the path
does not terminate at the recipient).

Predecessor attacks:These attacks occur if the same path is
used by the initiator while communicating to the responder. If
a compromised node records its predecessor, then most of the
time the initiator will be the predecessor. However in MuON
as every node randomly picks up the gossip target, different
messages follow different paths. Hence this type of attack is
not possible in MuON.

Message volume attack:An adversary can differentiate
responders from other nodes by observing the volume of data
transmitted, since initiators generate less volume of data as
compared to responders. This attack is possible against MuON,
if the adversary is a global adversary and can observe the
volume of data from all nodes within the network.

Intersection Attack:This attack can be launched by a global
adversary, who can observe all the various communication
paths within the network. The initiator and responder will
always be on the communication path, and the intersection
of these paths would reveal the identity of the initiator and
responder. Like several other anonymity protocols, MuON is
vulnerable to intersection attacks.

In summary, we see that MuON can resist most kinds of
attacks in the absence of a global adversary. We believe that
such an adversary is impractical for large and dynamic P2P
systems, though many of these attacks can be thwarted by
means of cover traffic [4].

C. Security Guarantees

In MuON, message confidentiality and integrity are
achieved using cryptographic techniques such as cryptographic
hash, public/private keys and session keys. Hence these guar-
antees are constrained by the strengths of the cryptographic
algorithms actually used.

When the initiator sends the request, it generates a nonce
r1 and a session keyksession. The initiator then generates
a header, which contains the nonce, session key and the
initiator’s public key. The header is then encrypted using the
responder’s public key. Similarly, the responder also includes
the nonce in the header for the response and encrypts this
header with the initiator’s public key. Thus the nonce and ses-
sion key always remain confidential.MSGalways encrypts the
data and nonce, using the session key. Since the session keys
are not reused, encrypting the data with session keys helps
thwart dictionary attacks. Thus confidentiality is maintained.

The header,hdr always contains a cryptographic hash
signed by the private key of the sender (initiator in case of
requests and responder in case of responses). The crypto-
graphic hash is computed overMSGand the required fields
of hdr and is signed by the sender’s private key. This signed
cryptographic hash has several uses. It allows the receiver
to verify the correspondence between a givenMSGand its
MSGHDR. The signed cryptographic hash helps the receiver
detect if an adversary changed the contents of the message
or the nonce. Similarly, when an initiator receives a response,
the initiator can verify that the response originated from the
responder, because the cryptographic hash is signed by the
responder’s private key. Thus an adversary cannot masquerade
as the responder. Likewise, the nonce contained within each
header and data message can be used by the initiator to detect
a replay of a response. Likewise, if the responder keeps track
of nonce values of the past requests, it can detect the replay
of requests.

9

VI. CONCLUSION AND FUTURE WORK

We have presented MuON, a protocol for providing mutual
anonymity in dynamic P2P networks. The contributions of
MuON are twofold; the protocol provides reliable mutually
anonymous communication over dynamic P2P networks, while
maintaining low bandwidth and processing overhead; and it
exhibits application friendly characteristics such as bounded
communication latency and message integrity and confiden-
tiality. Since network outages can be modeled as churn, we
believe that MuON provides resilient communication between
initiator and responder.

In the future, we plan to incorporate a cover traffic scheme
in order to enhance MuON’s anonymity guarantees. We also
plan to investigate the use of MuON for creating censorship
resistant services [37] and ’Denial-of-Service’ (DoS) resistant
services.

REFERENCES

[1] The anonymizer, http://anonymizer.com/.
[2] Peersim peer-to-peer simulator, http://peersim.sourceforge.net/.
[3] K. Bennett and C. Grothoff. GAP-practical anonymous networking. In

Privacy Enhancing Technologies Workshop (PET’03), Mar. 2003.
[4] O. Berthold and H. Langos. Dummy traffic against long term intersection

attacks. InProc. of Privacy Enhancing Technologies workshop (PET
2002). Springer-Verlag, LNCS 2482.

[5] R. Bhagwan, S. Savage, and G. Voelker. Understanding availability. In
Proc. of the 2nd International Workshop on P2P Systems (IPTPS ’03).

[6] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky.
Bimodal multicast.ACM Trans. Comput. Syst., 17(2):41–88, 1999.

[7] D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms.Communications of the ACM, 24(2):84–90, 1981.

[8] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker.
Making gnutella-like p2p systems scalable. InSIGCOMM ’03: Proc.
of the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 407–418, 2003.

[9] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A Distributed
Anonymous Information Storage and Retrieval System. InDesigning
Privacy Enhancing Technologies: International Workshop on Design
Issues in Anonymity and Unobservability, pages 46–66, New York, 2001.

[10] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: Design of
a type iii anonymous remailer protocol. InSP ’03: Proc. of the 2003
IEEE Symposium on Security and Privacy, page 2, 2003.

[11] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenkcr,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic algorithms for
replicated database maintenance. InPODC ’87: Proc. of the 6th annual
ACM Symp. on Principles of distributed computing, pages 1–12, 1987.

[12] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. InProc. of the 13th USENIX Security Sym-
posium, San Diego, CA, Aug. 2004.

[13] M. J. Freedman and R. Morris. Tarzan: A Peer-to-Peer Anonymizing
Network Layer. InProc. of the 9th ACM conference on Computer and
communications security, pages 193–206, Washington, DC, 2002.

[14] E. Gabber, P. B. Gibbons, D. M. Kristol, Y. Matias, and A. Mayer.
Consistent, yet anonymous, web access with lpwa.Commun. ACM,
42(2):42–47, 1999.

[15] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié. Peer-to-peer member-
ship management for gossip-based protocols.IEEE Trans. Computers,
52(2):139–149, 2003.

[16] C. Gülcü and G. Tsudik. Mixing E-mail with Babel. InProc. of the
Network and Distributed Security Symposium - NDSS ’96, pages 2–16,
Feb. 1996.

[17] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and
J. Zahorjan. Measurement, modeling, and analysis of a peer-to-peer file-
sharing workload. InSOSP ’03: Proc. of the nineteenth ACM symposium
on Operating systems principles, pages 314–329, 2003.

[18] I. Gupta, K. Birman, and R. Renesse. Fighting Fire With Fire: Using
Randomized Gossip To Combat Stochastic Scalability Limits.Journal
on Quality and Reliability Engineering International: Secure, Reliable
Computer and Network Systems, 29(8):165–184, May 2002.

[19] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. The peer
sampling service: experimental evaluation of unstructured gossip-based
implementations. InProc. of the 5th ACM/IFIP/USENIX international
conference on Middleware (Middleware 2004), pages 79–98, 2004.

[20] M. Jelasity, A. Montresor, and O. Babaoglu. A modular paradigm for
building self-organizing peer-to-peer applications. InEngineering Self-
Organising Systems, pages 265–282, July 2003.

[21] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil. A
performance vs. cost framework for evaluating dht design tradeoffs under
churn. InProc. of the 24th Infocom, Miami, FL, March 2005.

[22] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the
evolution of peer-to-peer systems. InPODC ’02: Proc. of the twenty-
first annual symposium on Principles of distributed computing, pages
233–242, 2002.

[23] A. Pfitzmann and M. Waidner. Networks without user observability.
Computers and Security, 6(2):158–166, 1987.

[24] M. Portmann and A. Seneviratne. Cost-effective broadcast for
fully decentralized peer-to-peer networks.Computer Communications,
26(11):1159–1167, 2003.

[25] M. G. Reed, P. F. Syverson, and D. M. GoldSchlag. Anonymous
Connections and Onion Routing.IEEE Journal on Selected Areas in
Communications, 16(4):482–493, May 1998.

[26] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web Transac-
tions. ACM Transactions on Information and System Security,, 1(1):66–
92, Nov. 1998.

[27] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in
a DHT. In Proc. of the 2004 USENIX Annual Technical Conference
(USENIX ’04), Boston, Mass., Jun. 2004.

[28] M. Ripeanu, I. T. Foster, and A. Iamnitchi. Mapping the gnutella
network: Properties of large-scale peer-to-peer systems and implications
for system design.CoRR, cs.DC/0209028, 2002.

[29] M. Roe. Performance of block ciphers and hash functions - one year
later. In Fast Software Encryption, pages 359–362, 1994.

[30] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study
of peer-to-peer file sharing systems. InProc. of Multimedia Computing
and Networking 2002 (MMCN ’02), San Jose, CA, Jan. 2002.

[31] V. Scarlata, B. N. Levine, and C. Shields. Responder Anonymity
and Anonymous Peer-to-Peer File Sharing. InThe Ninth International
Conference on Network Protocols (ICNP’01), pages 272–280, Mission
Inn, Riverside, CA, Nov. 2001.

[32] S. Sen and J. Wang. Analyzing peer-to-peer traffic across large networks.
IEEE/ACM Trans. Netw., 12(2):219–232, 2004.

[33] R. Sherwood, B. Bhattacharjee, and A. Srinivasan. P5: A protocol
for scalable anonymous communication. InProc. of the 2002 IEEE
Symposium on Security and Privacy, pages 58–70, Berkeley, May 2002.

[34] C. Shields and B. N. Levine. A protocol for anonymous communication
over the internet. InProc. of the 7th ACM conference on Computer and
communications security, pages 33–42, Athens, Greece, 2000.

[35] S. Tanaraksiritavorn and S. Mishra. Evaluation of gossip to build scalable
and reliable multicast protocols.Perform. Eval., 58(2+3):189–214, 2004.

[36] W. Vogels, R. van Renesse, and K. Birman. The power of epidemics:
robust communication for large-scale distributed systems.SIGCOMM
Comput. Commun. Rev., 33(1):131–135, 2003.

[37] M. Waldman, A. Rubin, and L. Cranor. Publius: A robust, tamper-
evident, censorship-resistant and source-anonymous web publishing sys-
tem. InProc. of 9th USENIX Security Symp., pages 59–72, Aug. 2000.

[38] B. R. Waters, E. W. Felten, and A. Sahai. Receiver Anonymity via
Incomparable Public Keys. InProc. of the 10th ACM conference on
Computer and Comm. Security, pages 112–121, Washington, DC, 2003.

[39] L. Xiao, Z. Xu, and X. Zhang. Low-Cost and Reliable Mutual
Anonymity Protocols in Peer-to-Peer Networks.IEEE Transactions on
Parallel and Distributed Systems, 14(9):829 – 840, Sept. 2003.

[40] Y. Zhu and Y. Hu. TAP: A Novel Tunneling Approach for Anonymity
in Structured P2P Systems. InInternational Conference on Parallel
Processing (ICPP’04), pages 21–28, Montreal, Quebec, Canada, Aug.
2004.

10

