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Wide Area Trdfie: The Failure of Poisson Modeling 
Vern Paxson and Sally Floyd, Member, IEEE 

I. INTRODUCTION 

HEN MODELING network traffic, packet and connec- W tion arrivals are often assumed to be Poisson processes 
because such processes have attractive theoretical properties 
[19]. A number of studies have shown, however, that for both 
local-area and wide area network traffic, the distribution of 
packet interarrivals clearly differs from exponential [25], [22], 
[ 181, [ 121. Recent work argues convincingly that LAN traffic is 
much better modeled using statistically self-similar processes 
[28], which have much different theoretical properties than 
Poisson processes. For self-similar traffic, there is no natural 
length for a “burst”; traffic bursts appear on a wide range 
of time scales. In this paper we show that for wide area 
traffic, Poisson processes are valid only for modeling the 
arrival of user sessions (TIELWET connections, FTP control 
connections); that they fail as accurate models for other WAN 
arrival processes; and that WAN packet arrival processes 
appear better modeled using self-similar pnxesses. 

For our study we analyze 24 traces of wide area TCP traffic. 
We consider both previous and new models of aspects of 
TELNET and FTP traffic, discuss the implications of these 
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models for burstiness at different time scales, and compare the 
results of the models with the trace data. We show that in some 
cases commonly used Poisson models seriously underestimate 
the bmtiness of TCP traffic over a wide range of time scales. 
(We restrict our study to time scales of 0.1 s and larger.) 

We first show that for interactive TELNET traffic, 
connection arrivals are well-modeled as Poisson with 
fixed hourly rates. However, the exponentially distributed 
interarrivals commonly used to model packer arrivals 
generated by the user side of a TELNET connection grievously 
underestimate the burstiness of those connections, and high 
degrees of multiplexing do not help. Using the empirical 
Tcplib [ l l ] ,  [l2] distribution for TELNET packet interarrivals 
instead results in packet arrival processes significantly burstier 
than Poisson anivals, and in close agreement with traces 
of actual traffic. From these findings we then construct a 
model of TELNET traffic parameterized by only the hourly 
connection arrival rate and show that it accurately reflects 
the burstiness found in actual TELNET traffic. (We do not 
model the “ELNET response, only the user side.) The success 
with this model of using Tcplib packet interarrivals confirms 
the finding in [12] that the arrival pattern of user-generated 
TELNET packets has an invariant distribution, independent 
of network details. 

For small machine-generated bulk transfers such as SMTP 
(email) and NNTP (network news), counection arrivals are not 
well-modeled as Poisson, which is not surprising since both 
types of connections are machine-initiated and can be timer- 
driven. Previous research has discussed how the periodicity of 
machine-generated IP traffic such as routing updates can result 
in network-wide traKic synchronization [17], a phenomenon 
impossible with Poisson models. 

For large bulk transfer, exemplified by FTP, the traffic 
structure is quite different than suggested by Poisson models. 
As with TELNET connections, user-generated FTP session 
arrivals are well-modeled as Poisson with fixed hourly rates. 
However, we find that FTP data connections within a single 
FTP session (which are initiated whenever the user lists 
a directory or transfers a file) come clustered in bursts. 
Hereafter we will refer to these data connections as FTPDATA 
connections, and the corresponding bursts as FTPDATA bursts. 
Neither FTPDATA-connection nor FTPDATA-burst arrivals 
are well-modeled as Poisson processes. Furthermore, one of 
our key findings is that the distribution of the number of bytes 
in each burst has a very heavy upper tail; a small fraction of the 
largest bursts carries almost all of the FTPDATA bytes. This 
implies that faithful modeling of FTP traffic should concentrate 
heavily on the characteristics of the largest bursts. 
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Dataset 

I.BL PKT-1 
LBL PKT-2 
LBL PKT-3 
i.BL PKT-4 

Poisson arrival processes are quite limited in their hursti- 
ness, especially when multiplexed to a high degree Our 
findings, however, show that wide area traffic is much burstier 
than Poisson models predict, over many time scales Thic 
greater burstiness has implications for many aspects 01’  con- 
gestion control and traffic performance. We conclude the paper 
with a discussion of how our burslines\ results mesh with self- 
similar models of network traffic, and then with a look at the 
general implications of our results. 

Date When What 

Fri 17Dec93 2PM4PM I .7M TCP pkts. 
Wed 19Jan94 2PM4PM 2.4M TCP pkts. 
T’hu 20Jan94 2PM4PM I.8M TCP pkts. 
Fri 21Jan94 2PM-3PM 1 3M pkts. 

11 TR4CES USED 

Our study is based on two \ets of traces of widt: area 
network traffic. The first set, shown in Table I, consisted 
of ‘I‘CP SYNFIN connection stadstop packets. SYNEIN 
packets are enough to meawre connection start time\ (and 
hence connection arnval processes), durations, TCP protocol, 
participating hosts, and data bytes tran\ferTed in each dirtxtion. 
The BC and UCB traces are analyzed in  depth in [ 121, and also 
in 1341, and the IJCB trace forms the basis of the connection 
Characteristics used for Tcplib [ I  I]. The NC, UK, and DEC 
traces are analyzed in  1341, and the LBL traces are analyzed 
in 1341, [35]. The ‘DEC 1-3” row\ represents three wide 
area TCP SYNFIN traces each spanning 1 day, and the 
“LBL 1-8” row represents X wide area TCP SYNFIN trace\, 
each spanning 30 days. The reader I \  referred to the above 
mentioned papers for details regarding the characteristics of 
the lraffic in each dataset. including the number of connections 
and bytes due to each TCP protocol 

These traces are all fairly lengthy, allowing us to asse\s how 
traflic varies over the cour\e of a day or longer, and giving 
U\ enough TCP connection arrivals to make a statistically 
sound evaluation of the connection drnval processes. These 
traces are used in Section I11 to evaluatc the effectivenes of 
using Poisson models for TCP connection arrivals. Because 
SYNJFIN traces allow us tci characteriztb connection size, we 
also used these traces i n  Section VI to investigate the notion 
of “ITPDATA bursts.” 

Because the SYNFIN traces do not contain information 
regirding packet arrivals within a connection, to evaluate 
packrr arrival processes we acquired nine packet-level traces 
of wide area traffic, summarized in Table 11.’ 

The “LBL PKT-rr” rows summari7e traces gathered at the 
Lawrence Berkeley Laboratory’s wide area Internet gateway. 
The first three traces captured all TCP packets, and lasted two 
hours The final two traces captured all packets and lasted one 
hour. In the first set of traces, the fraction of dropped packet\, 
whcre known. was always 5 5 . lo-‘’ For the second set, i t  

was always 5 0.001. 
The “DEC WRL-n” rows summariie traces gathered at 

the primary Internet access point for the Digital Equipment 
Corporation. The access point is operated by Digital‘ s Palo 
Alto research groups, and the traces were \upplied by Digital‘s 

WRL-2 
WRL-3 
WRL-4 

”The BC and LJCB traces listed in Table I actually include all packets, and 
are analyzed as such in [ 121. We cxcluded a packet-level analysis ot’ the RC 
dataset because of its low traffic rate (on average about 1 packet/s over the 
1 I days), and the UCB dataset because it forms the basis of the Tcplih library, 
against which we compare the packet-level traces. 

T ~ u  OOMar9.5 2AM-3AM 3 9M pkts 

Thu WMar9.5 2PM-3PM 5 7M pkts 
Thu O‘JMar95 IOAM-1 IAM 4 3M pkts 

~ 
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TABLE I 
SUMMARY OF WIDE AREA TCP CONNELTION TRACES 

LBL PKT-5 lFri 28Jan94 12PM-3PM I 1.3M pkts. t DEC WRL-1 lWed OXMar95 I IOPM-11PM IX3M pkts. 

Western Research Lab (hence “WRL”). For these traces, the 
fraction of dropped packets was always 5 0.00025. 

The packet traces do not include a large number of TCP 
connections, unlike the traces in Table I, so we do not use them 
lor evaluating Poisson models for TCP connection arrivals, nor 
for the size of PTPDATA bursts (though the traces are used to 
illustrate the heaviness of the distribution’s upper tail). Instead 
we use the LBL PKT datasets in Section IV and Section V 
I O  evaluate different modeh for TELNET packet arrivals. and 
hoth the LBL PKT and the DEC WRL datasets in Section 
VI1 to investigate the presence of “large-scale correlations” in 
wide area network traffic. (We did not include the DEC WRL 
datasets in our packet-level TELNET evaluation because, due 
io the use of a firewall proxy server, the DEC TELNET traffic 
is dominated by a single, heavily-loaded machine.) 

To disambiguate between the LBL and IIEC SYNEIN 
traces and packet traces, we use LBL-R and DEC-n to refer 
to SYN/FIN traces, and LBL PKT-n and DEC WRL-n to 
refer to packet traces. 

111. TCP CONNECTION INTERARRIVALS 

This section examines the connection start times for several 
TCP protocols. The pattern of connection arrivtils is dominated 
by a 24-hour pattern, as has been widely observed before. 
We show that for TELNET connection arrivals and for FTP 
session arrivals, within one-hour intervals the arrival process 
can be well-modeled by a homogeneous Poisson process; each 
of these arrivals reflects an individual user starting a new ses- 
uion. Over one hour intervals, no other protocol’s connection 
drrivals are well-modeled by a Poisson proccss. Even if we 
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Fig. 1. Mean, relative, hourly connection arrival rate for LBL-1 through 
Hour 

LBL-4 datasets. 

restrict ourselves to ten-minute intervals, only FTP session and 
TELNET connection arrivals are statistically consistent with 
Poisson arrivals, though the arrival of SMTP connections and 
of FTPDATA "bursts" (discussed later in Section VI) during 
ten-minute intervals are not terribly far from what a Poisson 
process would generate. The arrivals of NNTP, FTPDATA, and 
WWW (World Wide Web) connections, on the other hand, are 
decidedly not Poisson processes. 

Fig. 1 shows the mean hourly connection arrival rate for 
datasets LBL-1 through LBL-4. For the different protocols, we 
plot for each hour the fraction of an entire day's connections 
of that protocol occurring during that hour. (In the figure, FTF) 
refers to sessions.) For example, TELNET connections 
occur primarily during normal office hours, with a lunch- 
related dip at noontime; this pattern has been widely observed 
before. FTP file transfers have a similar hourly profile, but 
they show substantial renewal in the evening hours, when 
presumably users take advantage of lower networking delays. 
The NNTP traffic maintains a fairly constant rate throughout 
the day, only dipping somewhat in the early morning hours 
(but the mean size of each connection varies over the course 
of the day; see [35]). The SMTP traffic is interesting because it 
shows a moming bias for the LBL site (west-coast U.S.) and an 
afternoon bias for the Bellcore site (east-coast U.S.); perhaps 
the shift is due to cross-country mail arriving relatively earlier 
in the Pacific time zone and later in the Atlantic time zone. 

Fig. 1 shows enough daily variation that we cannot reason- 
ably hope to model connection arrivals using simple homo- 
geneous Poisson processes, which require constant rates. The 
next simplest model is to postulate that during fixed-length 
intervals (say, one hour long) the arrival rate is constant and 
the arrivals within each interval might be well modeled by a 
homogeneous (fixed-rate) Poisson process. Telephone traffic, 
for example, is fairly well modeled during one-hour intervals 
using homogeneous Poisson arrival processes [ 181. 

To evaluate these Poisson models, we developed a simple 
statistical methodology (Appendix A) for testing whether 
arrivals during a given 1 h or 10 min interval are Poisson 
with a fixed rate. We test two aspects of each protocol's 
interarrivals: whether they are consistent with exponentially 
distributed interarrivals, and whether they are consistent with 
independent interarrivals. If the arrivals during the interval 
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Fig. 2. Results of testing for Poisson arrivals. 

are truly Poisson, then we would expect 95% of the tested 
intervals to pass each test. Note that we would also expect 
testing 10 min intervals to perhaps be more successful than 
testing one-hour intervals, because using ten-minute intervals 
allows the arrival rate to change six times each hour rather 
than remaining constant throughout the hour. 

We applied our methodology to all of the TCP connection 
traces shown in Table I. For each trace, we separately tested the 
trace's TELNET, FTP, FTPDATA, SMTP, NNTP, and WWW 
connections. Only two of the traces had significant WWW 
traffic, but as use of this protocol is rapidly growing, it is 
worth investigating even given the limited samples. 
FTP here refers to an FTP session (i.e., an FTP control 

connection), while FTPDATA refers to the data-transfer con- 
nections spawned by these control connections. Prior to our 
analysis we removed the periodic "weather-map" FTP traffic 
discussed in [35], to avoid skewing our results. We also tested 
arrivals of FTPDATA bursts (see Section VI below). 

Fig. 2 shows the results of our tests, for both one-hour 
intervals (top plot) and ten-minute intervals (bottom plot). 
Along the x-axis we plot the percentage of tested intervals 
that passed the statistical test for exponentially distributed in- 
terarrivals, and along the y-axis the percentage that passed the 
test for independent interarrivals. The dashed lines correspond 
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to a 95% pass-rate, which we would expect on average it‘ 
the arrivals were truly Poisson. In general, we expect Poisson 
arrivals to cluster near the upper right comer of the plots. 

Each letter in a plot corres;ponds to a sangle trace’s connec 
tion amvals for the given TCP protocol. Iztters drawn in large 
bold indicate that the trace’s arrivals are statistically indistin 
guishable from Pois\on arrivals (see Appendix A for details) 
A + or - after a letter indicates that consecutive 1nter:irrival 
times are consistently either positively or negatively correlated. 
even if the correlation itselt is not partitularly strong (again, 
see Appendix A). 

We see immediately that TELNET connection arrivals and 
FTP session arrivals are very well modeled as Poisson, both for 
1 h and 10 min fixed rates. No other proiocol’s arrivals are well 
modeled as Poisson with fixed hourly rates. If we require fixed 
rates only over 10 min intervals, then SMTP and FTPDATA 
burst arrivals are not terribly far from Poisson, though neither 
is statistically consistent with Poisson arrivals, and consecutive 
SMTP interarrival times show consistent positive correlation. 
NNTP, FTPDATA, and WU’W arrival+, on the other hand, ale 
clearly not Poisson. 

That NNTP and to a lesser extent SMTP arrivals are not 
Poisson is not too surprising. Because of the flooding mech- 
anism used to propagale network news. NNTP connrxtions 
can immediately spawn secondary connections as new network 
new& is received from one remote peer and in turn offered 10 
another. NNTP and SMTP connections are also often timer- 
driven. Finally, SMTP connections are perturbed by mailing 
list explosions in which one connection immediately follows 
another, and possibly by timer effects due to using the Domain 
Name Service to locate MX records I RFC9741. 

That FI’PDATA connection arrivals me clearly not Poisson 
can be readily attributed to the fact that “multiple-get” file 
transfers often result in a rapid succe\sion of FTPDATA con- 
nections, one immediately tollowing another [35]. Coalescing 
multiple FTPDATA conneckions into single burst (Section VI) 
arrivals improves the 10 niin Poisson fit comewhat. but still 
fall9 short of statistical consistency. 

The finding that TELNET connection arrivals are well- 
modeled as a Poisson process with fixed hourly rates is at 
odds with that of [31], who found th,it user interarrival times 
looked “roughly lognormal”. We believe the discrepancy IS 

due to characterihg the distribution i3f all of the interarrivals 
lumped together, rather than postulating separate hour1 y rates. 

Given that TELNET connection anivals appear I’oissnn 
ovei one-hour intervals, one might imagine that other human- 
initidted traffic such as R1,OGIN and XI I will also fit this 
model. We find that RLOGIN does ,and X11 does not. We 
conjecture that the difference i s  t h d  during a single XI 1 
session (corresponding to running an instance of xtrprm, say) 
a user initiates multiple XI I connections. while TELNET and 
RLOGIN sessions are comprised of ;I single TCP connection. 
Thus, ‘ELNET connection arrivals correspond to users de- 
ciding to begin using the network; XI l connection arrivals 
correspond to users deciding to do something new during 
their use of the network. The forme1 behavior is likely to be 
close to uncorrelated, nienroryless a r m  als, since each arrival 
gencrally involveb a new iiser. The I:dter IS  much more ahin 

Fig. 3. 
nections. 

Empirical distributions of packet-interarrivals within TELNET con- 

to the creation of lTPDATA connections during a single FTP 
session, since a single user is involved in generating new 
arrivals. Because XI I connections are created in this way, 
their arrivals do not have the memoryless property and hence 
are not Poisson. If we could discern between XI1 session 
arrivals and XI 1 connection arrivals, then we conjecture we 
would find the session arrivals IO be Poisson. 

1V. TELNET PACKET INTERARRIVALS 
The previou5 section showed that start times for TELNET 

connections are well-modeled by Poisson processes. In this 
section we look at the packet arrival process within a TELNET 
connection. We restrict our study to packets generated by the 
’TELNET connection onginator; this in general i3 a user typing 
,it a keyboard. We would expect the packets generated by the 
‘TELNET connection responder to have a somewhat different 
itrrival process, since they will usually include both echoes 
of the user’s keystrokes and larger bursts clf bulk-transfer 
consisting of output generated by the user’s remote commands. 

Because the originator packets are initiated by a human, 
we might hope that the arrival process is to some degree 
“invariant”; that is, the process may be independent of network 
dynamics and instead mainly reflect the delays and bursts 
of activity associated with people typing commands to a 
computer. Indeed, our empirical results of the interarrival 
times between packets in a single TELNET connection are 
consistent with the empincal Tcplib distribution found by 
previous researchera. Unlike the exponential distribution, the 
empirical distribution of TELNET packet interarrival times is 
heavy-tailed; we show that using the exponential distribution 
results in seriously underestimating the bur\tiness both of 
IELNET traffic within a single connection and of multiplexed 
TELNET traffic. Modeling TELNET packet arrivals by a Pois- 
son process, as is generally done, can result in simulations and 
analyses that significantly underestimate performance mea- 
sures such as average packet delay. 

Fig. 3 shows two empincal distributions ot the interarrival 
times of packets within TELNET connections. The solid line 
shows the distribution used by Tcplib 11 11, 1121; the dashed 
line shows the same for the LBL PKT-I trace. Above 0.1 s. 
the agreement is quite good. especially in the upper tail. That 
different sites produce the same distnbution argues heavily 
that the distribution is independent of network dynamics 
and instead reflect\ human typing dynamics. Below 0.1 s 
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Fig. 4. Comparisons between Tcplib and exponential interpacket times. 

the interarrival times probably are dominated by network 
dynamics; but, as stated earlier, in this paper we are not 
concemed with time scales below 0.1 s. 

Even ignoring the lower tail, the intermival distribution is 
not even close to exponential in shape (note that the z-axis is 
logarithmically scaled). To dramatize this fact, we have also 
ploaed two logarithmically-scaled exponential distributions. 
The lefthand one (‘‘fit #1”) has the same geometric mean as 
the LBL PKT-1 distribution, and the righthand one has the 
same arithmetic mean. 

The exponential fits are very poor. Using the exponential 
distribution fitted to the Same geometric mean will faithfully 
capture only the distribution of packet inmrarrivals that are 
between 200 and 400 ms apart. Shorter inkrarrivals will be 
overestimated, and longer interarrivals will be underestimated. 
For example, the exponential distribution models a full 25% 
of the interarrivals as being less than 8 ms, and only 2% as 
being longer than 1 s, but for the actual data under 2% were 
less than 8 ms apart, and over 15% were more than 1 s apart. 

The exponential distribution fitted to the arithmetic mean 
fares even worse. For example, it predicts nearly 70% of 
the packets will arrive more than 1 s apart, when the actual 
observed distribution is 15% of the packets. 

Thus, simple exponential distributions for packet interarrival 
times, which are necesslary for Poisson models of packet 
arrivals, provide very poor fits to the observed distribution. 
On the other hand, the main body of the observed distribution 
fits very well to a Pareto distribution (doubly-exponential; see 
Appendix B) with shape parameter p x 0.9, and the upper 
3% tail to a Pareto distribution with /3 x 0.95. Interestingly, a 
Pareto distribution with ,L3 < 1 has infinite mean and variance; 
a very different beast than an exponential distribution. We will 
see later that Pareto-distributed interarrivals lead to observable 
large-scale correlations (Appendix C). 

It is not surprising that interactive packet arrivals do not fit 
a Poisson model, since earlier work looking at many different 
components of interactive trdfic failed to find any statistically 
significant exponential  fit^ to the observed distributions [20]. 
This leaves the question: What are the consequences of using 
Poisson packet arrivals rather than the Tcplib distribution for 
TELNET traffic? 

Fig. 4 shows two views of packet arrivals from two sim- 
ulated TELNET connections, each lasting 2,000 s. The first 
graph shows the first 200 s, and the second graph the entire 
2,000 s. Row 1 for each graph shows a connection using 

independent, identicdly-distributed (Lid.) interpacket times 
from the Tcplib distribution, and row 2 shows a connection 
using i.i.d. interpacket times from an exponential distribution 
with a mean of 1.1 s (to give roughly the same number of 
pmkets as the Tcplib distribution). We have plotted a dot 
for each packet arrival, with the z-axis giving the time of 
the arrival. In all, there were 1,926 Tcplib inararrivals and 
2,204 exponential interarrivals, Over both time scales, the 
packets from the connection with Tcplib interpacket times are 
dramatically more clustered. 

This difference in burstiness between exponential and 
heavy-tailed (i.e., Tcplib) interpacket times persists to some 
extent for multiplexed connections. For example, we ran 
10 min simulations with 100 active TELNET connections, 
where all connections were active for the entire duration 
of the simulation. In one simulation each connection used 
Tcplib interpacket times, and in the other simulation each 
connection used exponential interpacket times. We found 
that the multiplexed packet arrival processes with Tcplib 
interpacket times remained more bursty. For each simulation, 
consider the number of TELNET packets arriving during 
successive 1 s intervals. For the simulation with individual 
comections using Tcplib interpacket times, this aggregate 
number had a mean of 92 and a variance of 240; for 
the simulation with exponential interpacket times, the 
aggregate number had a mean of 92 and a variance of 
97. Even a high degree of statistical multiplexing failed to 
smooth away the difference between the two packet arrival 
processes. 

One of the natural performance measures for TELNEIT 
traffic is average packet delay. It would not be hard to construct 
simulations, one using Tcplib and the other using exponential 
inrterarrivals, where making the mistake of using exponential 
interarrivals instead of Tcplib significantly underestimates the 
average queueing delay for TECNET packets. 

The above shows that the Tcplib packet interarrival dis- 
tribution behaves quite differently than a Poisson process, 
even in the presence of multiplexing. We now show that for 
measured network traffic, these differences extend far beyond 
the time scale of individual packets. To look at the difference 
in burstiness at different time scales, we first extracted all 
TELNET originator packets, except those consisting of no 
uger data (“pure ack”), from the two-hour LBL PKT-2 trace. 
These packets belonged to 277 separate TCP connections. Of 
these connections, 4 were anomalously large and rapid (more 
than 21° bytes transfmred by the originator at sustained data 
rates exceeding 8 bytesh). These are unlikely PO correspond 
to human typing, were clear outliers, and are probably better 
modeled as bulk transfer connections. Removing the outliers 
left us with 273 connections. 

We then synthesixd several two-hour packet traces as 
fallows. For each of the TELNET connections, we synthesized 
a connection with the same starting time within the two- 
hour period and the same size (in packets). One of the 
synthesized traces used the Tcplib empirical distribution for 
the packet interarrivals within each connection (“TCPLIB”); 
one used exponential interarrivals with mean 1.1 (“EXP”); and 
one uniformly distributed each connection’s packet arrivals 
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over the interval between when the connection began and 
when during the LBL PKT-2 trace the connection terminated 
(“VAR-EXP”). This last method corresponds to exponential 
interarrivals with the mean ddjusted to reflect the conncction’s 
actudl observed packet rate. Thus, for the TCPLIB and EXP 
schemes, we generated connection< with the same darting 
times and size\ (in packets) as their counterparts in the 
LBI, PKT-2 trace, but perhaps with different durations, while 
with the VAR-EXP scheme. the generated connections shared 
starting time, size, and duiation. 

A valuable tool for assessing bur\tiness over different 
time-scales is the “variance-time plot” [ 2 8 ] ,  [21], which we 
describe here by example rather than rigorously. Suppose 
we have a count process consisting of 72 000 observations, 
corresponding to a two-hour trace viewed every 0.1 s. Each 
observation gives the number of packet arrivals during that 
0.1 ’% interval The variance of this count process gives us ;in 
indication of how burvty the traffic \w;i‘, when viewed on a 
time scale of 0.1 s. 

If however we are interested in the process’s burst-structure 
on ii time scale of 1 0  s, we could construct a “smoothed” 
version of the process by averaging the first 100 observations 
to obtain the process’s medn value during the first 10 s, the 
next 100 observations for the next 1 0  s, and so on. In general 
we can do this sort of smoothing for any aggregation level 
M ,  where in this examplt. hl = 1110 The variance of the 
smoothed process then gives us an indication of hou bursty 
the traffic was when viewed on a 10 5 time scale. 

A natural question is then: how doej the variance change 
as we progressively smooth the process 7 By plotting variance 
versus degree of smoothing ( M ) ,  we can examine hon bursti- 
nev, changes according to the time stale used to view the 
traffic. 

For count processes with rapidly decaying autocorrelation 
functions, such as Poisson processes, the variance of a process 
aggregated to level hl will be l/hf times the varimce of 
the. unaggregated process (see Section VII-C). For processes 
with more persistent autocorrelation functions, however, the 
variance will decay more gradually Given this relationship, 
we can then construct a variance-timc plot by smoothing the 
process for different values of A4 and plotting the \arianee 
of the smoothed process on the y-axis versus the aggregation 
level ( M )  on the .r-axis We use logarithmic scales because 
the) allow us to iinmedi‘ttely asse\\ whether the ~ariance 
decays as 1/M (which will show up on the plot as d straight 
line with slope - l), or more slowly (d slope more shallow than 
- 1 ), indicating slowly decaying autocorrelation or possibly 
nondationariiy; that is, f r o m  the plot we can tell a great deal 
about burstines\ at different time scales 

Fig. 5 shows such a plot for the LRL PKT-2 TELNIiT trace 
and for the three xhernes discussed above Here the unaggre- 
gated process (A4 -= 1) corresponds to 72 000 observations of 
the number of TELNET originator packets amving during 0.1 
s intervals. The y-axis is thtb variance of the aggregated process 
normalized by dividing by the square of the average number 
of packets per 0 1 s. This normalization allows us to compare 
the variance of processes with different numbers of ,irrivals, 
as the traces consisted of between 82 500 and 86 000 packets. 
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Variance-Time Plot for TELNET packet arrival process. The line 
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From the plot il is immediately clear that the variance 
of the TCPLIB scheme agrees closely with the LBL PKT-2 
trace data, while both EXP and VAR-EXP exhibit far less 
variance, indicating they are much less burnty over a large 
range of time scales. Thus, the TCPLIB scheme preserves 
the burstiness present in the measured traffic, while the EXP 
and VAR-EXP schemes both sacrifice burstiness at larger time 
scales. At very large time scales (nil = lo’), we again get 
agreement between all of the schemes and the measured traffic, 
because these time scales are so coar\e that we are essentially 
viewing each connection’s arrivals lumped together as a single 
observation-differences in the distribution of the arrivals 
within the connection are lost due to the coarse granularity 
of our observation\. 

Fig. 6 shows the difference in burstinejs between the 
schemes explicitly. Here we plot the arrha! process corre- 
sponding to 5 F intervals ( M  = 5 0 )  for the LBL PKT-2 trace 
and for the EXP trace. The r-axis shows the time in seconds, 
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and the y-axis shows the total number of TELNET packets in 
each 5-s interval. The average number of packets in the two 
traces are similar: the LBL PKT-2 trace has an average of 
59 packets in each 5 s interval, and the fixed-rate exponential 
trace has an average of 57 packets in each 5 s interval. The 
variances, however, are quite different. With 5 s bins, the 
LBL PKT-2 trace has a variance of 672, while the exponential 
trace has a variance of 260. 

Clearly, this difference in the packet-generation rate over 
5 s intervals could have consequences for queueing delays in 
simulations using these two different traces. As the variance- 
time plot shows, the LBL PKT-2 trace is more busty over 
many time intervals, not only over the 5 s intervals shown here. 
The conclusions are that using exponential packet interarrival 
times for TELNET connections results in substantial under- 
estimations of the burstiness of multiplexed TELNET traffic, 
but using i.i.d. interarrivals drawn from the Tcplib distribution 
faithfully reproduces the burst structure. 

V. FULCY UODEUNG TELNET QRICZNATQR TRAFFIC 
Section III has shown that over 1-hour periods, TELNET 

connection arrivals are well-modeled as Poisson processes, 
and Section IV has shown that within a TELNET connection, 
packet interanival times can be modeled using the heavy- 
tailed distribution in Tcplib. The connection size in bytes 
has been previously modeled by a log-extreme distribution 
[34]; the distribution of the connection size in packets is 
somewhat different, and seems to be better modeled by a 
log-normal distribution (see below). In this section, we put 
these three pieces t o g e h r  to cofnstruct a complete model 
of TELNET originator traffic that is parameterized only by 
the connection arrival rate. Variance-time plots show that this 
model corresponds well to empirical mtwurements. 

First, we look at the diflermce in the distributions of origi- 
nator bytes per connection versus originator packets. Previous 
work reports that the number of bytes sent by the originator 
in a wide area TELNET connection is wdl-modeled using a 
log-extreme distribution with location parameter a = log, 100 
and scale parameter p = log, 3.5 [35]. We experimented with 
using this distribution to produce sizes for an equal number of 
TELNET connections as appaared in the LBL PKT-2 trace. We 
found that the distribution consistently generates connection 
sizes (in bytes) much larger than the connection sizes (in 
packets) observed in the trace. We attribute this difference 
to two effects: 

the [34] fit was made using month-long traces of TEL- 
NET connections, allowing for much longer and larger 
connections tlnam are prewnt in m r  two-hour @ace; 
the [34] fit models mnnection size in bytes and not in 
packets. One generally a6sumes that each TELNET origi- 
nator packet conveys one byte of user data, comsponding 
to a keystroke. Often, however, a packet carries more than 
one byte, either due to effects of the Nagle algorithm 
[32] or because the TELNET connection is operating 
in “line mode” [53 or “line-at-a-time mode” [361, [371. 
For example, the LBL PKT-2 TELNET originator traffic 
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Fig. 7. 
plete TELNET model, FULL-TEL. 

Variance-time plot comparing LBL PKT-2 trace data witb the com- 

comprised about 85,000 packets carrying 139,000 user 
data bytes. 

Given these difficulties, we attempted to fit the observed TEL- 
NET connection sizes (in packets) with another simple analytic 
distribution. We found that a log,-normal distribution with 
log,-mean 5 = log, 100 and log,-standard deviation o = 2.24 
fit the connection size in packets well visually, considerably 
better than a log-extreme distribution with parameters fitted to 
the data. (The exact numerical values of 5 and (T here should 
not be taken too seriously, as they came from a small sample.) 
We also found that a log-extreme distribution fit the connection 
size in bytes better than a log-normal distribution, so our data 
remains consistent with the models presented in [34]. 

Putting all of this together, we have a complete model 
for TELNET traffic, FULL-TEL, parameterized only by the 
TELNET connection arrival rate. FULL-EL uses Poisson 
connection arrivals, log-normal connection sizes (in packets), 
and Tcplib packet interarrivals. 

We then used FULL-TEL to generate three synthetic traces 
of TELNET originator traffic, using a connection arrival rate 
of 273 connections in 2 h. Because such traces start off with 
no traffic and build up to a steady-state corresponding to the 
connection arrival rate, we trimmed the traces to just their 
second hour. We then used variance-time plots to compare the 
traces with the second hour of the LBL PKT-2 TELNET trace. 

Fig. 7 shows the results of the comparison. In general the 
agreement is quite good, though the models have slightly 
higher variance than the trace data for M > 10’. We conclude 
that FULL-TEL faithfully captures TELNET originator traffic, 
except to be a bit burstier on time scales above 10 s. As a 
final note, we also tested the model’s fit to the LBL PKT-1 
and PKT-3 TELNET traces; the results were similar. 

VI. m D A T A  CONNECTION ARRIVALS 

This section investigates arrival processes for FTP traffic. 
Modeling FTP is particularly important because FITDATA 
connections currently carry the bulk of the data bytes in wide 
area networks [6]. Section 111 showed that while FTP session 
arrivals can be modeled as Poisson processes, this is not the 
case for FTPDATA connection arrivals. This section shows 
that FTPDATA connections within a session are clustered in 
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Log10 Seconds 

Fig 8 FTPDATA mtrasebsion sonnection \pdcing 

bursts, and that the distnbution of burst sizes in bytes is quite 
heavy-tailed; halt‘ of the FTP traflic volume comes from the 
largest 0.5% of the FTPDATA bursts. These large bursts are 
likely to completely dominate FTP traffic dynamics. 

In this paper, we do not attempt to model ITPDA’TA 
packet arrivals within a connection. LJnlike TELNET connec- 
tions, where the originator packet amcal process is largely 
determined by the packet generation pattem at the source, 
the packet arrival procesi for an ETPDATA connection is 
largely determined by network factors such as the available 
bandwidth, congestion, and details of the transport-protocol 
congestion control algorithms. Prev IOU\ studies have found 
that FTPDATA packet interamvals art“ far from exponential 
[ 12 1; this IS not surprising, since the above network factors 
lead to a proces4 quite difterent from niemoryless arrivals. 

1’0 begin, section 111 showed that FTPDATA coiinection 
arrival\ are not well-modcled as Poisson. Each FTP session 
\pdwns a number of FTPDATA connections; one key question 
is how these connections are distributed within the duration 
of the FTP session. 

We computed the distributlon of spacing between FTPDATA 
connections spawned by the same FFf’ \es$ion for six datasets: 
LBL- I ,  LBL-5, LBL-6, LBL-7, D H - 1 ,  and UCB. Here, 
“\pxing” refers to the amount of lime between the end of 
one FTPDATA connection within a 4csIion and the beginning 
ot the next. Fig. 8 plots thc results. In each case the upper tail 
ot the distribution is much heavier than cxponential (the r-axis 
is logarithmic), and is better approximated using a log-nonnal 
or log-logihc distribution Furthermore. d l  of the distributions 
show inflection points at spacings between 2 and 6 s, indicating 
bimodality. We conjecturt: that spacings shorter than these 
points reflect sequential FI PDATA connections due to inultiple 
transfers (the FTP “mget” coinmandl or a user issuing a 
“list directory command” very shortly followed by a “get.” 
Such closely-spaced connections might well be interpreted as 
corresponding to a single “burst” of file-transfer acti\ ity. We 
wmewhat arbitranly chose a spacing of 5 4 s (the dashed 
verlical line) a\ defining connection\ belonging to the same 
burvt , and we note that such \pacings are not inordinattdy 
laiger than the 1-2 s spacings that can occur internal to a single 
FTPDATA connection due to TCP retransmission timeouts. 
Hue, “somewhat arbitrdrlky” means that. for example, using 
a cutoff spacing of 2 \ in\tead (which actually slightly belter 
delimits the two modes of ,zctivity) results in virtually identical 
rewlts as those di\cus\ed in the remainder of this sec tion. 

_ _ _ _ _ _ _ ~ -  
___-i- _ _ - -  _ _ - -  _ -  ._ - 

LBL-6 (39758) 
L B L J  (46,568) 
UCB (2,810) 
DEC-1 (4,490) 
UK (5,837) 

0 2 4 6 8 10 
X of All bursts 

Fig. 9. 
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With this definition of a burst of FTPDATA connections, 
we analyzed the same datasets to measure the distribution of 
the number of bytes transferred during a single connection 
burst. The distribution proves to be remarkably heavy-tailed. 
Fig. 9 shows the percentage of all FTPDATA bytes (y-axis) 
due to the largest 10% of the FTPDATA burhts (x-axis). The 
numbers in parentheses in the legend give the total number of 
FTPDATA bursts occumng during each trace. The first vertical 
line marks the upper 0.5% of the FTPDATA bursts, and the 
line to its right, the upper 2%. 

The key point to draw from this figure it, that the upper 
0.5% tail of the FTPDATA bursts holds beme( n 30byte.s. Thus, 
at any given time FTP traffic will most likely be completely 
dominated b y  a single or small handful of bursts . Note that 
this phenomenon is present in all of the connection datasets 
we studied. The dalaset with the least hcavy tail is UK (shown 
in the figure), which still held 30% of the data bytes in the 
upper 0.5% tail and 55% in the 2% tail. The NC dataset lies 
about halfway between UK and the others in  the figure, and 
the remainder lie within the bounds of the lithers shown in 
the figure. 

This finding means that for many aspects of network 
behavior, modeling small FTP sessions or bursts is ir- 
relevant; all that matters is the behavior of a few huge 
bursts. The sizes and durations of these bursts will vary 
considerably from one time to another; but they will be 
present. We also note that our finding that the size of 
an FTPDATA burst has a heavy tail matches a survey 
conducted by Irlam [24] of the sizes of files in 1,000 
file systems comprising 12 million files and 250 GB 
of data: I .9% of the files accounted for 71 % of the bytes, 
and 0.5% accounted for 54% of the bytes. 

We performed fitting of the upper tail of the distribution of 
data bytes per FTPDATA burst and found that the upper 5% 
tail fits well to a Pareto distribution with 0.9 5 /3 5 1.4 [34]. 
As the Pareto distribution is heavy-tailed (see Appendix B, 
this agrees with our findings in Fig. 9. In contrast, the upper 
0.5% tail of an exponential distribution always holds about 
3% of the entire mass of the distribution, regardless of the 
distribution’s mean. 

Figs. I O  and I 1  graphically illustrate the dominance of the 
upper FTPDATA-burst tail. The four plots in Fig. 10 show 
the FTPDATA traffic rate in bytedminute for the LBL PKT-1, 
PKT-2, PKT-3, and PKT-5 datasets, and in Fig. 1 I the same is 
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Fig. 10. Proportion of LBL PKT FTPDATA tlamc due to largest 2% 
(shaded) and 0.5% (black) connection bursts. 

shown for the DEC WRL datasets. The shaded areas represent 
traffic contributed by the largest 2% of the bursts, and the 
black areas the largest 0.5%. The numbers in parentbeses give 
the number of bursts and FTPDATA connections comprising 
the 2% burst upper-tail. (For example, the upper 2% tail of 
the PKT-1 bursts was made up of 7 bursts consisting of a 
total of 19 FTPDATA connections, while for WRL-2 this 
tail was made up of 16 bursts and 1,796 connections.) We 
see that sometimes butsts contain many separate connections 
and sometimes not. Indeed, the distribution of the number of 
connections per burst is well-modded as a Pareto distribution. 
For example, a sin$le burst in the LBL-7 dataset was made 
up of 979 separate FTPDATA connections. 

For PKT-1 (364 bursts) and PKT-3 (552 bursts), the upper 
2% and 0.5% tails hold around 50% and 15% of all the traffic; 
for PKT-2 (483 bursts) and PKT-5 (238 bursts), 85% and 60%. 
The large degree of difference between PKT-l/PKT-3 and 
PKT-2PKT-5 illustrates how volatile the upper-tail behavior 
is; a trace comprising 400 bursts (and substantially more FTP- 
DATA connections) might well be completely dominated by 2 
of the bursts, or it might not, since 2 is a very small sample 
of the upper-tail behavior. Thus we are left in the difficult 
position of knowing that upper-tail behavior dominates traffic, 
but with such small numbers of bursts that we cannot reliably 
use large-number laws to predict what we are likely to see 
during any given mce. Furthermore, the PKT-2 and PKT-5 
bursts were not geographically anomalous, either: the largest 
PKT-2 burst was to a government site in Colorado, and the 
largest PKT-5 burst was to a commercial site in Washington 
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state. These sites are about 1,500 km and 1,OOO km distant 
from LBL, respectively. 

For the DEC datasets, the difference in the size of the burst 
tails is not so pronounced: in WRL-1 (971 bursts), WRL-3 
(2,161 bursts), and WRL-4 (2,100 bursts) the 2% and 0.5% 
tails hold 54-70% and 33-422 of all the traffic, while for 
WRL-2 (788 bursts) they hold 45% and 18%. The lesser degree 
of difference between the datasets is what we would expect: 
since the datasets have considerably more bursts than their 
LBL counterparts, large-number laws become more reliable in 
predicting the size of the tails. 

We would also like to know whether the arrivals of the 
upper-tail bursts can be modeled as a Poisson process, as that 
would provide a first step toward predicting their effect on 
network traffic. We analyzed the 199 upper-OS%-tail LBL-6 
bursts, first removing effects due to daily variation in traffic 
rates by looking at interarrivals in terms of number of interven- 
ing bursts instead of seconds. We found that the dataset failed 
the statistical test (Appendix A) for exponential interarrivals 
at all significance levels. Thus, caution must be used if 
approximating large-burst arrivals using a Poisson process; 
further analysis is needed to model the burst-clustering. 

MI. LARGE-SCALE CORRELATIONS AND 
POSSIBLE CONNECTIONS TO SELF-SIMILARITY 

We have argued in the previous sections that on any time- 
scale smaller than user-session arrivals, modeling wide area 
TCP traffic using Poisson processes fails to faithfully capture 
the traffic's dynamics. Recent work [28] shows that local- 
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area Ethernet traffic (and perhaps wide area TCP traffic) is 
much better modeled as a self-similar process, which displays 
substantially more burstiness over a wide range of time scales 
than do Poisson processes. 

In this section we discuss the degree of “large-scale cor- 
relation” present in the LBL PKT traces of TELNET traffic, 
and the LBL PKT and DEC WRL traces of FTPDATA traffic 
and aggregate wide area traffic. We also consider the evidence 
for whether such correlation is well modeled using self- 
similar processes. We begin with a discussion of the concepts 
of “large-scale correlation,“ “long-rangt: dependence,” and 
“self-\hilarity ” We next give an overview of two existing 
methods for generating truly self-similar traffic, along with a 
new method for producing “pseudo-self -similar” traffic. We 
then discuss how the traffic models developed in this paper 
might match these method\. We finish with a preliminary 
asse\sment of the possible self-similmty of general wide 
arra traffic. We find the evidence inconclusive, though the 
traffic clearly exhibits large-scale correlations inconsistent with 
Poiscon processes. 

A. Definitions 
We use the term “large-heale correlation” as an informal 

way of describing correlations that persist across large time 
scales. For example, the lower right plot in Fig. 10 shows a 
40 min burst of highly correlated traffic 

A related, more precise notion of sustained correlation 
is that of “long-range dependence.” A stationary process ir 
long-range dependent if its autocorrelation function r ( k )  is 
nonsummable (i.e., X I ,  r(k) = (CL) [9]. Thus, the definition of 
long-range dependence applies only to infinite time senes. 

The simplest models with long-range dependence are se&: 
similar processes, which are characteriAed by hyperbolically- 
decaying autocorrelation functions. Self-similar and asymptot- 
ically self- similar processes are particularly attractive models 
because the long-range dependence can he characterized by a 
single parameter, the Hurst parameter (which can be estimated 
using Whittle’s procedure [ 211, [28]) 

In the following sections, we look at ways in which long- 
range dependence in general, and self-similarity in particular, 
mighl anse in wide area network traffic An important point 
to bear in mind is that, even if the finite arrival process 
derived from ii particular packet trace does not appear self- 
similar. if it exhibits large scale correlations suggestive of 
long-range dependence then that procesi is almost certainly 
bettcr approximated using &I self-similar process than using 
Poisson processes. Thus, we believe that self-similar modeling 
IS a promising successor to Poisson modeling. It may not be ex- 
actl!, right, but given our current understanding of networking 
phenomena, i t  appears in any case a goad approximation. 

B. Producing Selj-Similar Traflc 

There are several methods for producing self-similar traffic 
that could account for self-similarity in wide area TCP traffic. 
As discussed in [28], self-similar traffic can be produced by 
multiplexing ON/OFF sourccs that have a fixed rate in the ON 

periods and ON/OFF period lengths that are hecrvy-tailed (see 
Appendix B). 

A second method for generating self-similar traffic that 
could fit TCP traffic is an M / G / m  queue model, where 
customers arrive according to a Poisson process and have 
service times drawn from a heavy-tailed distribution with 
infinite variance [9], [28]. In this model, X t  lis the number 
of customers in the system at time t. The count process 
{ Xt}t=o,l,a, is asymptotically self-similar (see Appendix D 
for further discussion). The M / G / w  model implies that 
multiplexing constant-rate connections that have Poisson con- 
nection arrivals and a heavy-tailed distribution for connection 
lifetimes would result in self-similar traffic. 

We investigated an additional method of producing arrival 
processes that appear to some extent self-similar. This method 
involves constructing arrivals using i.i.d. Pareto interarrivals 
with /3 M 1, and then considering the corresponding count 
process (the number of arrivals in consecutive intervals). The 
goal behind the method is to explore how a simple model 
of TELNET traftic might lead to self-similarity. We refer to 
this method as “pseudo-self-similar” because while the traffic 
i l  generates has large-scale correlations and the “visual self- 
similarity” property 1281 over many time scalei, we show in 
Appendix B that the traffic generated is not actually long-range 
dependent (and thus not self-similar). 

C Relating the Methods to Traflc Models 

1 )  TELNET: As explained in [28], straight lines on 
variance-time plots with slopes more shallow than -1, such 
as that for the PKT-2 TELNET trace in Fig. 5,  are suggestive 
of self-similarity. In general, the slope of an arrival process’s 
variance-time plot is a function of the process’s autocorrelation 
function [9], and a long-range dependent process will exhibit 
slowly-decaying variunces on such a plot. That is, the variance- 
time plot will decline in a more shallow fashion than with slope 
- 1, though not necessarily in a straight line. An important 
point is that such slow decline can also occur due to the 
presence of nonstationarity. 

In addition to looking at variance-time plots of the TELNET 
traffic, we also used Whittle’s procedure [21,2H] and Beran’s 
goodness-of-fit test 121 to gauge the agreement between the 
traffic and the simplest type of self-similar process, fractional 
Gaussian noise [3]. All of the results are consistent with 
self-similarity on scales of tens of seconds or more. 

We postulate that two different mechanisms contribute to the 
apparent self-similmty of TELNET traffic. On smaller time 
scales, apparent self-similarity might arise from the fact that 
within individual TELNET connections, packet interarrivals 
are well modeled as i i d .  Pareto (Section IV). Thus, individual 
TELNET connections match the i.i.d. Pareto mothod of gener- 
ating pseudo-self-similar traffic that appears self-similar over 
a range of time scales (Appendix C). On larger time scales, we 
note that our source model of TELNET conneciions presented 
in Section V in some respects matches the hl/G/oo model 
described in the previous section. TELNET connection sizes 
in packets have a long-tailed [38] distribution, in that the tail 
function of a log-normal distribution decreases more slowly 
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than any exponential function. While we show in Appendix E 
that the M/G/m queue with log-normal service times does 
not msult in l o n g m g e  dependent or self-similar traffic, the 
difference in tail weight between a log-normal distribution and 
a Pareto idisittibution may be small enough that over the time 
scales of interest (seconds bo minutes) the traffic still appears 
self-similar. 

Put together, these miodeis of TELNET traffic suggest why 
the tndTic might appear self-similar (or at least long-range 
depeadent) over many time scales. W l e  individually the 
models fall short of proving self-similarity, it could be the 
case that the combination of i.i.d. P m t o  inkpacket times and 
the M I G h  effect due to awltiplexing mak& ” J 2 T  traffic 
truly self-similar. At a minimum, these model6 explain why the 
traffic exhibits large-scale. comlations. Fudmer work is needed 
for a definitive statement regarding Wal wlf-similarity. 

previous section, aw model of FTP 
respmts to the MIGIm model of Poisson q v a l s  with heavy- 
tailed lifetimes. The distribution of byres p@r FITDATA burst 
is heulvy-trailed (Section VI), and mP snesswns have Poisson 
arrivals (Section III). Over larger time scales the packet 
arrival process wi th i  an FI’FDATA burst can be gauaibly 
approximated as constmt-rate. If we appaolaimated FTPDATA 
burst arrivals as Poisson (a bit of a stretch, 4 shown in Slectian 
I11 above), and assumed that each FTPD , A burst received 
the same average rate, then multiplexed 8 traffic would fit 
the MIGIm model above, and should be self-similar. 

It turns out, though, thltat variance-time plots, Whittle’s 
procedure, and goodness-&fit tests of owr FIT traces all 
suggest that our FWDATA traces are not well-modeled its frac- 
tional Oaussian noise, d t h ~ u g h  the heavy-tailed distribution 
of FTPDATA b u m  clearly leads to large-scale correlations. 
The sole exception to thig finding is the DEC W E - 3  trace, 
for which the tests are consistent with self-similarity at time 
scales of 1 s or mater.  

One reason the FIT traces might not be well-modeled as 
fractional Gaussian noise is that the traces exhibit extremely 
high burstiness, including lengthy p~rkxls during which there 
is no FTP traffic. These ‘aIRIEl~” mean that the marginal dis- 
tribution function of the arrival process has a large peak 
at zero arrivals. Since fractional Gaussian noise is EL form 
of Gaussian process, its marginal distribution is normal, and 
cannot accommodate such a peak. 1 is ail1 possible that FTP 
traffk is well-modeled using W e n t  self-similar processes; or 
that it instead is not wel l -e l .ec l  as self-similar. In thl$ paper 
we do not try to resolve this issue, but limit our discussion 
to the interplay between mechmisms affecting FTP traftic 
dynamics and liup-scde correlations in the traffic. 

Unlike TELNET traffic, where the timing of packets gener- 
ated at the s m  is reasonably close Po the timing of the same 
packets transmitted on the: network, the timing of FWDATA 
packets transmitted on the network is intimately related to 
the dynamics of E P ’ s  congestion control a l g a r i h s .  The 
following paragraphs discuss several ways that, due in part 
to the effects of K P ,  multiplexed FTP traffic differs from 
the MIGloo model of self-similar traffic with constant-rate 
connections. While these tactom could account for our FTP 

2) F%p: Like the model of TELNET 

traces not appearing statistically self-similar, they do not imply 
the absence of long-range depndence. 

Unlike the MIGloo model, which best fits an environment 
where all connections have the same fixed constant rate, 
different FTP connections have quite different average rates, 
and within a single FTP connection the average rate varies 
over time. TCF”s congestion control algorithms increase the 
“MIP congestion window to probe for additional bandwidth, 
and reduce the congestion window again in response to con- 
gestion (packet drops). TCP’s window flow control has several 
separate effects on the traffic pattern for an individual FTP 
connection. First, over intervals less than a roundtrip time the 
FTP connection does not have a constmt rate; each packet is 
Sent only after the TCP source receives an acknowledgment for 
an earlier packet. Second, if there is congestion in the network, 
then an FTP connection does not have a constant rate even over 
longer time intervals; the average rate over a roundtrip time 
varies as the TCP congestion control window varies. Third, 
whether or not there is congestion in the network, different 
FTP connections will have different average rates, depending 
on such factors as the TCP window and packet sizes, the 
connection’s roundtrip time, and the queuing encountered in 
the network. These factors give rise to serious discrepancies 
between our trace data and the MIGlm model. 

One way to incorporate the effect of limited bandwidth 
into the MIGloo model would be to explore a model of an 
MIGIk queue instead of an MIGlca queue. In an MIGIk 
queue, because there are only k servers, the actual arrival 
times of individuals at a server would occasionally have to be 
delayed until there was available capacity. While this limited 
capacity would have the effect of reducing the fit of the 
multiplexed traffic to a self-similar model, it does not eliminate 
the underlying large-scale correlations in the MIGlm model. 
However, the MIGIk model as applied to FTP connections 
assumes that all active connections have the same constant 
rate, and this is not the case in actual FTP traffic. 

Another discrepancy between the M/G/oo model and our 
link traces concerns the effect of FTP traffic competing with 
other families of traffic on a congested link. The four main 
classes of traffic in our link traces were TCP, Mbone (primarily 
multicast UDP audio traffic), Domain Name System requests 
and replies (UDP-based), and DECnet. Unlike TCP, the UDP 
protocol does not incorporate congestion-avoidance mecha- 
nisms. Therefore, when TCP-based FT’P traffic is competing 
for bandwidth with Mbone UDP sources, only the FTP traffic 
will adjust to fit the available bandwidth. The UDP traffic 
will continue unimpeded. The effect of this interaction on 
the overall structure of FTP traffic remains an open ques- 
tion. 

D. Large-Scale Correlations in General Wide Area Traffic 
We finish with a preliminary look at whether wide area traf- 

fic multiplexed over different protocols appears self-similar. 
Fig. 12 shows variance-time plots for all of the LBL PKT 
traces listed in Table 11. Here, the unagmgated process 
( M  = 1) corresponds to observing the packets arriving during 
each 0.01 s interval. 
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LBL PK r datasets. 

Variance-time plot for all TCP / all link-level packet arrivals in the 

Recall that the first three LHL PKT traces captured all 'TCP 
packets for two hours, and the last two captured all wide area 
packets appearing on the gateway Ethernet for one hour. The 
first three traces consist of between 1.7 and 2.4 million packets, 
and the last two traces each have around 1.3 million packets. 
The corresponding rates of packetshour are above those of the 
"low hours" in [ 281, so we would hope to find that the traces 
exhibit exact self-similarity. 

We see in  Fig. 12 that PKT.4 and PKT-5, the full link-level 
traces, both yield straight lines with shallow slope, consistent 
with asymptotic self-similarity for izil 2 10 (0.1 s). For 
the TCP traces, PKT-I is concave down for small and large 
M , inconsistent with exact self-similarity, PKT-2 appears 
consisttnt with asymptotic self-similarity for A4 2 103 (10 
s), and PKT-3 has a straight section between M = 10 and 
A i  = 103. but not before or atter, also irictlnsistent with exact 
self-siniilarity. 

In contrast, use of Whittle' < procedurt. and goodness-of-fit 
tests suggest that the link-level PKT-4 trace and the TCP PKT- 
1 and PKT-3 traces are comistcnt with fractional Gaussian 
processes, while the link-lebel PKT-5 trace and the TCP 
PKT-2 trace arc not. 4 s  Fig. I O  shows, the FTP traffic in 
the PKT-5 and PKT-2 traces is heavily dominated by a few 
large F'TPDATA bursts. Thus, while large-scale correlaiions 
are clearly present in thex traces, i t  might be difficult to 
characterize the correlations over the entire trace with a single 
Hurst parameter. 

Fig 13 shows the same sort of variance-time plot for the 
DEC WRL datasets listed in rable 11. The least active 01' the 
WRL datasets exceeds the most active in IZS], so we would 

0 1 2 3 4 
log1 0 M (Aggregation Size) 

Fig 13. 
dataiets. 

Variance-time plot for all link-level packet arrivals i r i  the DEC WRL 

again expect to find exact self-similarity. The kariance-time 
plots for WRL-2 and WRL-4 are encouraging in this regard, 
lying in essentially straight lines for time scales of .O. 1 s and 
higher. WRL-3 lies in a straight line at time scalcs of 1 s and 
higher, while WRL-I does so only at 10 s and higher. But of 
these datasets. Whittle's procedure and Beran's goodness-of- 
fit test indicate that only WRL-3 is consistent with fractional 
Gaussian noise (at time scales of 1 s and greater). The others, 
while clearly exhibiting large-scale correlations, do not appear 
to be well-modeled by a simple self-similar process. This could 
be due to distorting effects of short-range dependence, better 
fits to other self-similar models such as ,fr.uctL)nul ARIMA 
processes [3], or the presence of nonstationarity. WRL-3 was 
also the only dataset whose FTP traffic appears consistent 
with fractional Gaussian noise, though we have not assessed 
whether this coincidence is significant. Clearly, further work 
is required to fully understand the correlational structure of 
wide area traffic. 

We end with a comment regarding the balance between link- 
level modeling and protocol-specific modeling. One approach 
to investigating self-similarity is to model multiplexed link 
traffic as self-similar, without attempting to model individual 
coiinections. This approach could have many USCS in simula- 
tions and in analysis. For example, self-similar traffic could 
be used instead of Poisson traffic to model cross-traffic, or 
sell-similar traffic could be used in simulations investigating 
link-sharing between two different classes of traffic. 

However, for many simulations, the simulator needs to 
model individual sources. In particular, it is only from mod- 
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eling of individual sources, and a direct implementation of 
TCP’s congestion control algorithms, that a simulation can 
take into account the effects of the TCP algorithms in different 
environments. TCP’s congestion control algorithms contribute 
long-term oscillations to the traffic pattern for a particular 
connection, as the TCP congestion window changes over 
the lifetime of the connection. In addition, TCP’s window 
flow control contributes a shorter-term periodicity to the 
traffic pattern, as each packet is transmitted in response to 
an acknowledgment returned fm an earlier packet [16]. It 
is particularly important to take into account these effects 
in simulations investigating changes to either TCP, the gate- 
way scheduling algorithms, or the network’s packet-dropping 
algor1 thms. 

VIII. IMPLICATIONS 

This paper’s findings are summarized in the Introduction. 
In this section we conclude with a look at the implications of 
our results. 

Several researchers have previously discussed the implica- 
tions of long-range dependence (burstiness across different 
time scales) in network traffic. Modeling TCP traffic using 
Poisson or other models that do not accurately reflect the long- 
range dependence in actual traffic will result in simulations and 
analyses that significantly underestimate performance mea- 
sures such as average packet delay or maximum queue size. 

Reference [ 181 examines the burstiness of data traffic over 
a wide range of time scales, and discusses the impact of 
this burstiness on network congestion. Their conclusions are 
that congested periods can be quite long, with losses that 
are heavily concentrated; that, in contrast to Poisson traffic 
models, linear increases in buffer size do not result in large 
decreases in packet drop rates; and that a slight increase in 
the number of active connections can result in a large increase 
in the packet loss rate. They suggest that, because the level 
of busy period traffic is not predictable, it would be difficult 
to efficiently size networks to reduce congestion adequately. 
They observe that, in contrast to Poisson models, in reality 
“traffic ‘spikes’ (which cause actual losses) ride on longer- 
term ‘ripples’, that in turn ride on still longer-term ‘swells’.’’ 
They suggest that a filtered variable can be used to detect the 
low-frequency component of congestion, giving some warning 
before packet losses become significant. 

Reference 1281 discusses some additional implications of 
long-range dependence of packet traffic. These include an ex- 
planation of the inadequacy of many commonly-used notions 
of burstiness, and the somewhat counterintuitive observation 
that the modeling of individual connections can gain insight 
from an understanding of the fundamental characteristics of 
multiplexed traffic. In this paper, observations of the char- 
acteristics of multiplexed aaffic motivated our revisitation of 
models for individual connections; indeed, we originally set 
out to challenge the notion that wide area traffic might be 
self-similar, and have come full circle. 

Reference [21] examines the long-range dependence of 
variable-bit-rate (VBR) video traffic. Their empirical measure- 
ments of VBR traffic show strong low-frequency components, 

and they propose source models for video traffic that display 
the same long-range dependence. Given the likelihood that 
VBR traffic will soon comprise a significant fraction of Mbone 
traffic, we soon will have wide area traffic of which a substan- 
tial portion is perforce self-similar, simply due to the source 
characteristics of its individual connections. 

There are some additional respects in which the burstiness 
and long-range dependence of aggregate traffic can affect 
traffic performance. Consider a link with priority scheduling 
between classes of traffic, where the higher priority class 
has no enforced bandwidth limitations (other than the link 
bandwidth itself). In such a partition, interactive traffic such 
as TELNET might be given priority over bulk-data traffic such 
as FTP. If the higher priority class has long-range dependence 
and a high degree of variability over long time scales, then the 
bursts from the higher priority traffic could starve the lower 
priority traffic for long periods of time. 

A second impact of the long-range dependence of packet 
traffic concerns classes with admissions control procedures 
that are based on measurements of recent traffic, rather than 
on policed traffic parameters of individual connections [7]. As 
has been shown by numerous researchers, such admissions 
control procedures could lead to a much more effective use 
of the available bandwidth [39]. Nevertheless, if the measured 
class has high burstiness consisting of both a high variance and 
significant long-range dependence, then an admissions control 
procedure that considers only recent traffic could be easily 
mislead following a long period of fairly low traffic rates. (This 
is similar to a situation in California geology some decades 
ago. Because there hadn’t been a large earthqwake for a long 
time, people began to believe it unlikely that there would be 
another one.) 

In summafy, we should abandon Poisson-based modeling 
of wide area traffic for all but user session arrivals. For 
TELNET traffic, we offer a faithful model of originator traffic 
parameterized by only the hourly connection arrival rate. 
Modeling the TELNET responder remains to be done. For 
FTP traffic, we have shown that modeling should concentrate 
heavily on the extreme upper tail of the largest bursts. A wide 
area link might have only one or two such bursts an hour, but 
they tend to strongly dominate that hour’s FTP traffic. Finally, 
our look at multiplexed TCP and all-protocol traffic suggests 
that anyone interested in accurate modeling of wide area traffic 
should begin by studying self-similarity. 

APPENDIX A 
METHODOLOGY FOR TESTING FOR POISSON ARRIVALS 

To test whether a trace of connection arrivals corresponds to 
a nonhomogeneous Poisson process, we first pick an interval 
length I over which we hypothesize that the arrival rate does 
not change. If the trace spans a total of T time units, we divide 
the entire trace into N = T / I  intervals each of length I .  We 
then separately test each interval to see whether the arrivals 
during the interval are consistent with arrivals from a Poisson 
process with rate fixed so that the expected number of arrivals 
is the same as the number actually observed. Thus, we reduce 
the problem of testing for nonhomogeneous Poisson arrivals to 
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that of testing a number of intervals for homogeneous Poisson 
ami vals. 

Poisson arrivals have two key charactthristics: the inierarrival 
times are both exponentially distributed. and independent. We 
discuss testing for each in turn. 

For each interval, wc test the interarrivals for an exponential 
distribution using the Anderson-Darling (i12) test. recom- 
mended by Stephens in [ I O ]  because it is generally much 
more powerful than either of the better-known Kolniogorov- 
Sinirnov or y2 tests. .A2 is also particulwly good for detecting 
dcviations in the tails of a distribui.ion. A2 is an empirical 
distrihuriori tesi; it looks at the eniirc observed distribution, 
rather than reducing the distribution into bins as is required 
by y'. 

We associatt. a signifit c i m ~  lev('/ with each A2 lest. For 
example, a lest with a significance level of 5% will correctly 
confirm the null hypothecis ( i f  it is correct) with probability 
0.YS; with probability 0.05, the test will erroneousl) declare 
the hypothesis false. Thus, the significance level indicates the 
proportion of "false negatives" (in general it is difficult to 
assess the corresponding percentage of' "false positives"). We 
can use significance-level testing as follows. Supposc. we lest 
A intervals for exponential interan-ivals and K of them pass 
the :I2 test at the 5% significance level. If the null hypothesis 
is correct, then the probability of h successes in N trials will 
be given by a binomial distribution with parameter i )  = .95. 
If we find that the probahility of observing K successes was 
le\.; than 596, then we zoncludc with 95%. contidence that the 
arrival process is inconsistent with exponential interarrivals. 

'There arc two important details for correctly applying 
aiitl interpreting the / I 2  test. The tirsi is that estimating the 
parameters of our  model from the data to be testc:d alters 
the significance levels 0 1 '  the A2 text (this applies to our 
niill hypothesis above. i n  which me tierive the mean of the 
exponential fit from the data rather than knowing it c i  priori). 
Thc second is that the number 01' data points tested also 
alters the significance levels. In general. the mort: points 
tested, the more likely the test will detect an incorrect null 
hypothesis. [ 101 gives procedures for incorporating both of 
these considerations into d 2  tests. 

We also need to test the interarrivals for independence. 
On\: indication of independence is s n  absence of significant 
autxorrelation among thi. interarri\.als. Autocorrelation can 
bcs significant in two different way>: i t  can be too strong in 
magnitude, or i t  can be ~ o o  frequently positive or negative. 
&e address each of these in turn. 

(iiven a tinic series 01' I /  samples from an uncorrelated 
white-noise process. the probability that the magnitude of the 
autlocorrelation at any lag will exceed 1.96/,/6 is 5%. Thus 
wc can test for independence by observing how often this 
occurs and using a binomial test similar to the one outlined 
above. (Becauhe for many non-Poisson processes autocorre- 
lation among interarrivals peaks at lag one, to keep our lest 
triictable we restrict i t  to just the lag one autocorrelaiion.) 

We also apply one further test for independent interarrivals. 
If the interarrivals are trul), independent. then we would expect 
thcir autocorrelation to be negative with probability 0.5 and 
positive with probability 0.5 For Poicson arrivals, then, the 

number of positive lag one autocorrelation values should be 
binomially distributed with parameter p = 0.5. Given this 
assumption, we assess the probability of at least the observed 
number of positive values occurring. If its probability is too 
low (< 2.5%) then we conclude that the interarrivals are 
significantly positively correlated. Similarly, if the observed 
number of negative values has probability <: 2.5%, then the 
interarrivals are significantly negatively correlated. 

APPENDIX B 
PARETO DISTRIBUTIONS 

In this paper the Pareto distribution plays a role both in 
TELNET packet interarrivals and in the size of FTPDATA 
bursts. This appendix discusses the Pareto distribution and its 
occurrence in the physical world. 

The classical Pareto distribution with shape parameter /j and 
location parameter ( I  has the cumulative distribution function 
[ 231 : 

F(:c) = P [ X  5 .E] = 1 - ( . / ! X , " .  t r , y  2 0, 3' 2 a; 

j ( z )  = [j,['n:-.j- 

with the corresponding probability density function: 

If @ 5 2, then the distribution has infinite variance, and if 
/) 5 1, then it has infinite mean. 

The Pareto distribution (also referred to as the power- 
law distribution, the double-exponential distribution, and the 
hyperbolic distribution) has been used to model distributions 
of incomes exceeding a minimum value, and sizes of asteroids, 
islands, cities and extinction events [26 ] ,  1291. Leland and Ott 
also found that a Pareto distribution with l.(i5 < /j < 1.25 is 
a good model for the amount of CPU time consumed by an 
arbitrary process 1271. 

In communications, heavy-tailed distributions have been 
used to model telephone call holding times [13] and frame 
sizes for variable-bit-rate video 121 1 .  The discrete Pareto (Zipt? 
distribution I I]: 

f '[x = n] = l / ( ( n  + 1)(n + 2 ) )  for 'n, 2 0. 

arises in connection with platoon lengths for cars at different 
speeds traveling on an infinite road with no passing [ l ,  p. 
951, [15, p. 401, a model suggestively analogous to computer 
network traffic. 

Following (281, we define a distribution as heavytailed i f  

(1 )  P [ X  2 :E]  - ( , : I ; - / ' .  as n: - OL: p 2 0. 

By this, we mean that for some /j and somc constant c, the 
ratio P [ X  2 . x ] / ( c . c ~ ~ ' )  tends to 1 as 2: * 'cl. This definition 
includes the Pareto and Weibull distributions [ 131. 

A more general definition of heavy-tailed defines a dis- 
tribution as heavy-tailed if the conditional mean exceedance 
(CME,) of the random variable X is an increasing function 
of z 1231, where 

C.lilE, = E[X- - : x ~ X  2 :I;]. 

Using this second definition of heavy-tailed, consider a random 
variable X that represents a waiting time. For waiting times 
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with a light-tailed distribution such as the uniform distribution, 
the conditional mean e x c e e d ”  is a decreasing function of 
x. For such a light-tailed di$tribution, the longer you have 
waited, the sower you am likwly to be done. POT waiting times 
with a medium-tailed distributhan such as the (memwyless) 
exponential distribution, the expected future waiting time is 
independent of the waiting time so far. In contrast, for waiting 
times with a heavy-tdled distribution, the longer you have 
waited, the longer is your expected future waiting time. For 
the Pareto distribution with p > 1 (that is, with finite mean), 
the conditional mean exceedance is a linear function of z [l, 
p. 701: 

CME, = x/@ - 1). 

The Pareto distribution is scale-invariant, in that the proba- 
bility that the wait is at least 22 seconds ia a fixed fraction of 
the probability that the wait is at least 2, for any 5 2 a. 

A related result shows that the Pareto distribution is the only 
distribution that is “invariant under truncation from below” 
[30], [ 11. That is, for the classical Pareto distribution, for 
y L 3:o , 

P [ X  > y J X  > B O ]  = P[(zo/a)X > y]. (2) 

Hence, the conditional distribution is also a Pareto distribution, 
with the same shape parameter /3 and new location parameter 
a‘ = ~ 0 .  We make use of this property in the next section. 

Finally, we note that Mandelbrot argues that because the 
asymptotic behavior of Pareto distributions with ,l3 5 2 is 
unchanged for a wide variety of filters (including aggregation, 
maximums, and the weighted mixture of distributions), and 
because this is true of no other distribution, this invariance 
could in some respects explain the widespread observance of 
Pareto distributions in the social sciences [29], [30, p. 3441. 

APPENDIX C 
PARETO INTERPACKET TIMES 

In this section we give some intuition for the observed 
long-range dependence of traces of TELNET traffic. Recall 
that the main body of the distribution of TELNET interpacket 
times fits a Pareto distribution with shape parameter 0.9, 
while the upper 3% tail fits a Pareto distribution with shape 
parameter 0.95. In this section we consider packets generated 
by a single connection using i.i.d. P a t o  interpacket times, 
for a Pareto distribution with shape parameter p and location 
parameter a. We then consider the associated count process 
X = {Xz}z=~,l,2,. where X i  is the number of packets 
arriving during the ith time interval, each time interval being 
a bin of width b. We give an intuitive explanation for the 
observed long-range dependence of the count process by 
looking at the properties of the point process of packet arrivals, 
concentrating on the interpacket times. We show that while this 
process is not truly long-range dependent, when observed over 
a finite time scale it exhibits properties we associate with self- 
similar processes. In particular, we show that aggregating the 
process by increasing b does not change the dominant features 
of the process. 

Let { X : b ) }  denote the count process associated with 
counting arrivals using bins of size b. We are interested in 
the behavior of {X,’b’} for different sizes of b. 

Rather than analyzing relationships between the precise 
values of different bins, we simplify the problem by just 
looking at whether, for a given i, X,(b) = 0 or X!b) > 0. 
We refer to the former as an empty bin and the latter as an 
occupied bin. Further, for j 2 i , we call Xj,:!,? a burst of 
occupied bins if for all k, i 5 k 5 j ,  bin k is occupied. 
Similarly, X:,!).,, is a lull if all the corresponding bins are 
empty. Sample paths of X are made up of alternating bursts 
and lulls. 

We are interested in the relative predominance of bursts 
versus lulls, as we change the bin size b and the Pareto shape 
parameter /3. 

Suppose bin i is occupied and bin i - 1 is empty. Then 
bin i begins a burst. Associated with each bin is a set of 
Pareto interarrival times, beginning with I,, the arrival that 
first fell into the bin. For bin i, we know that I ,  > b 
because the previous bin is unoccupied. Consider now the 
subsequent interarrivals In+1 . . . In+l contributing to the 
burst of consecutive occupied bins. Clearly each of these 
interarrivals must be < 2b, as otherwise they will skip a bin 
and end the burst. Furthermore, any interarrival in the range 
b < I < 2b has the potential of skipping a bin, depending on 
where we are positioned in the current bin prior to the arrival. 
Thus, any interarrival I > 2b definitely will end the burst, and 
I > b possibly will end the burst. 

Since the interarrivals are independent, we have a situation 
similar to that of a geometric random variable: for any given 
interarrival, it will with probability p t  terminate the burst, and 
with probability 1 - p t  continue the burst. Here pt is a function 
of exactly where we are in the current bin, but is bounded as 
follows: 

(3) 

where a and /3 are the Pareto location and shape parameters, 
and b is the bin width. 

We can then bound the expected length of a burst using 
the expected value of the geometric random variables that 
correspond to the lower and upper bounds in (3). Let B be 
the expected number of bins spanned by a burst. It can be 
shown that: 

B w { log(b/a),  if = 1, b > a,  and 
bla, i f , B = 2 , b > a a ,  

E [l..fi] if ,B = 4 
where b >> a holds if b - a x 6. 

Thus, for p = 2, as we “widen” our view by choosing b 
Iwger and larger, we will observe longer and longer bursts; 
for p = 1, the bursts grow longer with increasing bin size, but 
only very slowly; and for /3 = 3, the bursts have a constant 
length regardless of the size of the bins (!). 

Consider now the length of the lulls separating bursts. Let 
L be the length of a lull, and Lb be the number of bins (of size 
b) spanned by the lull. Each lull is due to a single interarrival 
that is possibly greater than 2b and definitely greater than b. 
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Due to the Pareto distribution's invariance to truncation from 
below (2), this means that the di\tribution of L will be stochas- 
ticallj bounded between P(0. ,j) and P(2h. j ) ) .  where ?fa, 0'1 
denotths the Pareto distribution with parameters CL and Y. 

Fiom this observation, it  Jbllows that: 

for . 

. 

. 

Thu\, the distnbution of l,~, I S  ini.nriunt w i t h  respect to b That 
is, regardless of the time scale over which we view the count 
procL"rs, the lulls between bursts will "look' the same 

We now can summarize the behavior of' the count pioce54 
varying values of /i. 
For i-l = 2 ,  the number of bins spanned by the bursts 
grows linearly with / I ,  while bins spanned by the lulls 
remains constant, so aggregation tairly quickly smciothes 
out the main variations of the count process. 
For p' = i, the burst lengths are constant across all 
time scales, a s  are the lull lengths: the process q p e u n  
telf-.similtr ort'r all timc scales. 
€:or i-l =: 1, the burst lengths (in bins) grow only very 
slowly (logarithmically I .  This means that over a large 
t:me scale, the predominance of bursts versus lulls re- 
mains virtually unchanged: rht. proL.e.s.s appecirL$ seu- 
Yitnilur otvr rmny rinir . s i w k s .  

Figs. 13 and IS illustrate the "visual self-similarity" [281 
of this process. Each figure plots 1,000 observations of the 
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Fig. 15. 
( -i = 1.a = I ) ,  Y different seeds. 

Count process I'or i.i.d. Pareto interarrivala. bin size h = 10' 

count process corresponding to i.i.d. Pareto interpacket times 
for ,8 = 1 and a = 1. Nine different random seeds were used 
in generating each figure. The first figure corresponds to using 
a bin-width of 6 = lo3, while the second figure uses 0 = lo7. 
To the eye, the two sets of arrivals exhibit the same general 
activity in terms of alternations of bursts and lulls and the 
fairly regular ceiling of activity, though the occupied bins of 
the b = IO' arrivals appear to have a higher mran than those 
o i  the b = 103 arrivals. As predicted by the aiialysis above, 
the average number of bins in a burst for b == 10' is somewhat 
higher than for b = L O 3  (a factor of 2.6), while the average 
lull size is virtually the same (a factor of 1.21. Overall, the 
sustained variation even when the process is aggregated by a 
factor of 10" is striking. 

In general, the process associated with j) =. 1 is similar 
to that of a single TELNET connection's traffic, which we 
model using i.i.d. Pareto interpacket times with = 0.95 for 
the upper tail of the distribution. Thus this model explains in 
part why TELNET traffic appears self-simi lar. 

We finish with an explanation of why the count processes 
associated with : j  = 1 and [j = are not. i n  fact, self-similar, 
even though the balance they exhibit between bursts and lulls 
suggests they might be. We have shown that Ihe lull length 
L is stochastically bounded between two Pareti) distributions 
with the same shape parameter $. But foI i j  5 1. the mean of 
H Pareto-distributed random variable is infinite. The expected 
burst size, on the other hand, is finite. Using these facts, and 
viewing the count process's bursts and lulls as an alternating 
renewal process. it follows that. for (1 5 1. on;e the process 
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reaches steady-state, each bin is empty with probability 1 
(regardless of the value of b). The autoconelation function 
of the process is thus 0 everywhere, and hence summable, 
so the pmess  is not long-range dependent (md so cannot be 
self-similar). 

Even though the count processes are not strictly self- 
similar, an important point remains that, when viewed over 
a finite time scale (i.e., before settling into steady-state), the 
count process associated with i.i.d. Pareto interarrivals (with 
,B 5 1) appears in many ways like a self-similar process. 
Assuming that this 
multiplexed, this fin 
observed “ E T  tr 
the count process is not 
imply that TELMET traffic is aot truly se1 
that TELNET traffic is truly self-similar 
assumptions in our argument (i.i.d. arrivals; no multiplexing) 
fail to faithfully model the traffic properties necessary for true 
self-similarity . 

This ar@”nt also shows that it is pogsible for a process 
which is nrvt long-range to appear to be so over 
many time scales. This some of the dangers of 
arguing for true self-simi ore g e w d l y ,  long-range 
dependence) based on (necessarily finite) measurements alone, 
without a corresponding model from which to argue for self- 
similarity analytically. 

At the same time, the question of whether a particular (infi- 
nite) model based on a finite process is long-range dependent is 
only one of the questions we are exploring. Equally important 
is whether or not long-range dependent models in general 
are useful as parsimonious approximations to particular finite 
processes arising in network traffic. Finally, we should not un- 
derestimate the value of the fundamental insights and shifts in 
focus that come from considering questions of self-similarity 
and long-range dependence. 

APPENDIX D 

GENERATING SELF-SIMILAR T R m c  
This section briefly discusses the M/G/oc  model for gen- 

erating self-similar traffic [SI, [9]. The M / G / m  queue model 
considers customers that arrive at an infinite-server queue 
according to a Poisson process with rate p. In the count process 
{Xt}t=0,1,2, produced by the MIGIm queue model, X t  
gives the number of customers in the system at time t. From 
[SI, for customers with a service time with distribution function 
F, the autocorrelation function r ( k )  for the count process is 
as follows: 

THE k f / c /m  MODEL FOR 

M 

r ( k )  = cov{X(t),X(t + k)} = (1 - F(z ) )dx .  (4) 
k 

A. The M/G/oo Model and the Pareto Distribution 

Consider customers with independent service times (or 
lifetimes) drawn from the Pareto distribution with location 
parameter a and shape parameter p, for 1 < p < 2 . From 

(4), the autocorrelation function r ( k )  is as follows: 

Following [4], the process {Xt) t=o, l ,a , . . .  is asymptotically 

( 5 )  

for 0 < D < 1 and L a slowly-varying function? Thus, for 
(1 2 0 and 1 < /? < 2 , the count process of the M / G / m  
model with Pareto lifetimes is asymptotically self-similar, and 
therefore long-range dependent. 

From [4], the process (Xt} ,=o , l ,2 , . .  is exactly selfsimilar 
only if 

self-similar if 

r(k) - k-DL(k)  as k ---t 00, 

r (k)  = 1/2((k + lyH - 2kZH + (k - VH) 
for 1/2 < H < 1 [4], [9, p. 591. In this case the process 
{ X t }  and the aggregated pmess  {X,’”’} have the same 
autocorrelation function. From this result, for Pareto service 
times and an arbitrary arrival rate p, the count process of the 
MIGloo model is not exactly self-similar. 

From [8, p. 1381, { X , }  has a Poisson marginal distribution 
with mean pp, where p is the expected service time. For the 
MIGIm model with Pareto service times, the expected service 
time is p a / @  - l), for ,l3 > 1. Thus, in this case { X t }  has a 
Poisson marginal distribution with mean pPa/(P - 1). 

APPENDIX E 
LOG-NORMAL DISTRIBUTIONS 

From [38], the log-normal distribution is called subexponen- 
tial because, along with the Pareto and Weibull distributions, 
the tail function is subexponential (i.e., decreases slower than 
any exponential function). In that paper, the Pareto, log- 
normal, and Weibull distributions are all defined as long-tailed. 
In this section we show that the log-normal distribution is not 
heavy-tailed, according to the definition given in (1). 

We use the estimate of the upper tail function for a standard 
normal random variable N as 

[14, p. 1751. Thus for X, a log-normal random variable with 
scale parameter 1 and shape parameter 1, 

Thus, for some constant c, 

e- log2 612 

logz . P[X 2 4 - c 

2For a slowly-varying function L, limt-- L ( t s ) / L ( t )  = 1 for all 2 > 0. 
Constants and logarithms are examples of slowly-varying functions. 
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So X is only heavy-tailed i t  for some constant c1 and some 
:1 2 0, 

x‘ ’ (’, ,’ J / A  

But we can show that for any 1 1 .  

> 1 “  log I .  ~ Id s 12 

for .I sufficiently large. (This follows because 1og.c > 7 1 ,  

therefore loi’ I: > r/, log .i:. and therefore f ‘(’i‘ > x T L . )  So the 
log-normal distribution is not heavy-tailed. Note that the log- 
nonnal distribution is not heavy-tailed even if we expand our 
definition of heavy-tailed to include slowly-varying functions, 
as in (5). 

A.  The &!/(;/cc Modrl and the Log-Nonnal Distribution 

We consider the M,/G”/x, model for service times with 
distribution function F It is already hnown (Appendix C) that 
if I ’  is a Pareto distribution, then the count process from the 
ill, (;/-c model 1 5  asymptotically self-,imilar, and therefore 
long-range dependent. In [hi\ \ection we show that if the 
lifetime\ have a log-normal distnbution, then the count Ixoce\s 
from the iZf/G/ xi model I> not long-range dependent. 

From (4) and (6), we h,ive 

0 I 7. I 

The count process irorn the M / G / x  model with k i g -  
I ( k )  nonnal lifetime5 is longrange dependent only if E; 

is infinite. For large K ?  

Hecause t/.r’ i \  finite and 

for x sufficiently large, then Cy=h I ( k )  is finite, and the count 
piocess of the i\!l/G/n. model with lognormal lifetimes is 
nor long-range dependent 

rhis analysis \hens that, in the limit, the behavior of 
the iZI/G/n; queue completely changes if the service times 
arc log-normal and not F’areto. An miportant open question, 
howe\er, I \  over what .art of finite time scale\ are these 
d I I forence 5 dct iial I y sign I tican t ’? 
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