
The Georgia Tech Network Simulator

George F. Riley
Georgia Institute of Technology

School of Electrical and Computer Engineering
Atlanta, GA. 30332-0250

riley@ece.gatech.edu

ABSTRACT
We introduce a new network simulation environment, developed
by our research group, called theGeorgia Tech Network Simula-
tor (GTNetS). Our simulator is designed specifically to allow much
larger–scale simulations than can easily be created by existing net-
work simulation tools. The design of the simulator very closely
matches the design of real network protocol stacks and hardware.
Thus, anyone with a good understanding of networking in general
can easily understand how the simulations are constructed. Further,
our simulator is implemented completely in object–oriented C++,
which leads to easy extension by users to experiment with new or
modified behavior of existing simulation models. Our tool is de-
signed from the beginning with scalability in mind, including the
support for distributed simulations on a network of workstations as
part of the basic design.

We give an overview of the features ofGTNetS, and present some
preliminary scalability results we have obtained by runningGTNetS
on a computing cluster at the Pittsburgh Supercomputer Center.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General

Keywords
Network Simulation, Large–Scale Simulations, Distributed Simu-
lation

1. INTRODUCTION
Computer based simulation is widely used in almost all areas of

networking research. A number of high–quality simulation tools
exist and are in widespread use. These tools allow researchers to
test and validate new and existing protocols under a variety of con-
ditions. An experimental protocol can be shown to work correctly
in the presence of packet losses, packet re–ordering, lengthy de-
lays, and lengthy round–trip times. This type of protocol validation
is typically done on fairly small scale topology models, since the
objective at this point is protocol correctness.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGCOMM 2003 Workshops
August 25 & 27, 2003 Karlsruhe, Germany
Copyright 2003 ACM 1-58113-748-6/03/0008 ...$5.00.

Once these protocols are known to be correct, the behavior of
these protocols must be demonstrated in realistic size networks to
insure that the performance of the protocol will be acceptable when
deployed on a large scale. For protocols designed for wired net-
works, tools such aspdns[15] andSSFNet[3] can be used on topolo-
gies of up to 100,000 network elements, although this can be time
consuming. The venerable and widely usedns2[8] can confort-
ably model networks of a few hundred to a few thousand network
elements. The creation of larger–scale simulation topologies of-
ten consumes excessive amounts of CPU time and system memory,
making this type of experimentation more daunting and therefore
less common.

The author’s prior work withParallel/Distributed ns(pdns) made
it clear that attempting to backstitch scalability and performance
into an existing simulation environment is difficult at best. With
this in mind, we undertook to develop a new network simulation en-
vironment, designed from the beginning to be distributed, scalable,
and easy to use. This simulation environment is called theGeor-
gia Tech Network Simulator(GTNetS). Like any tool designed for
use by the research community,GTNetSwill never be completely
finished, and will evolve over time as the needs and requirements
of the research community change. However, it is presently fully
capable of large–scale simulations of routers, end–systems, LAN’s,
and various end–user applications.

The motivation for the creation of this new environment is not
to replace or compete with any of the existing simulation tools in
widespread use. Rather, we hope that researchers will find our tool
useful in instances where existing tools cannot easily model the net-
work functions being studied, or cannot achieve the scale needed to
produce the desired results. Our tool is released and freely avail-
able to the networking research community in the hope that it will
be useful, and that researcers will contribute new and improved
models. The software can be downloaded from our web page [12].

In the remainder of this paper we will discuss the basic design
and features ofGTNetSin section 2, some sample simulation scripts
in section 3, and some representative results in section 4. Finally,
we will give a summary and future directions in section 5.

2. THE DESIGN OF GTNetS
This section discusses the design and capabilities of the newly

developedGeorgia Tech Network Simulator(GTNetS). GTNetSwas
conceived by the author while teaching a graduate level class in net-
work simulation methods, which was primarily focused on using
ns2 for all experiments. Many of the students pointed out diffi-
culties in usingns2to achieve the stated goals of the lab projects.
It became clear that, even thoughns2 is an excellent and widely
used research tool, there are a number of basic design deficiencies
that make it difficult to model certain aspects of network simula-

Proceedings ot the ACM SIGCOMM 2003 Workshops 5 August 2003

TCP Sink 3

H0

H1

R0

R1

Simulator A Simulator B

R2

R3

H2

H3

TCP Source 0

TCP Source 1

TCP Source 2

TCP Source 3

TCP Sink 0

TCP Sink 1

TCP Sink 2

Figure 1: Simple Distributed Network Model

tion experimentation. Further, the author’s experience in imple-
mentingParallel/Distributed ns(pdns) made it clear that achiev-
ing further improvements in topology scale with the baselinens2
product would be difficult. The design ofns2, using the hybrid of
Tcl andC languages, leads to substantial memory consumption in
many cases.

In the Summer of 2002, we began a research effort to create a
new network simulation environment that could be used in cases
where existing simulations lacked the capabilities to create the de-
sired experiments. This effort has resulted in theGeorgia Tech Net-
work Simulator. GTNetShas a number of basic design goals, which
we categorized into several high–level goals

2.1 Distributed Simulation and Scalability
Care must be taken in the basic design of the simulator when a

distributed simulation is planned. When a single simulation topol-
ogy model is decomposed into a number of small sub–models, and
executed in a distributed environment, there will often be simulated
links that connect nodes which are defined on two simulation pro-
cesses. Consider for example the simple topology in figure 1. In
this example, the link connecting routerR0 and routerR2 has its
endpoints on two different simulators. SimulatorA has no repre-
sentation of routerR2, and simulatorB has no representation of
routerR0. GTNetSallows the creation ofRemote Links, in which
only the local node must be specified. Remote links are assigned IP
addresses and address masks. No other information about the con-
nectivity of the remote link is needed. At initialization time of the
distributed simulation, any remote links having matchingNetwork
Addressportions of their IP addresses are assumed to be connected,
and any packet generated at routerR0 will be forward to simulator
B and delivered to routerR2. This is nearly identical to the ap-
proach used bypdns. TheSSFNetsimulator is designed to operate
on a share–memory multiprocessor, with global state available to
all simulation threads, and thus is not faced with similar problems.

Another potential problem is the possibility that a remote end-
point (aTCP server application for example) is defined and man-
aged in a separate address space, which means that a pointer to any
remote object may not be available. To address this issue,GTNetS
always identifies remote connection endpoints byIP Addressand
port number. The remote endpoint can be represented in the same
simulation process as the local endpoint, or by any other process in
the distributed simulation. The actions to create a connection are
identical in both cases. Again, this solution is similar to that used
by pdns, and is not an issue with the global–state, shared–memory
design ofSSFNet.

Another concern in distributed network simulations is route cal-
culations. A common approach to routing in a network simulator
is to use global topology knowledge to calculate a priori the best
path from any node to all other nodes. However, consider a sin-

gle large topology ofn nodes that is distributed onk simulation
processes. The topology is split intok sub–models (in a fashion
identical topdns), and each sub-model is simulated in a separate
simulation process, with approximatelyn=k nodes modeled and
simulated in each of thek processes. With this approach, each sim-
ulation may not have sufficient information to make routing deci-
sions at the links spanning the sub–model boundaries. For example,
routerR0 in simulatorA above does not have sufficient informa-
tion to determine which of the two remote links is the appropriate
link to forward packets destined to hostH2.

The simplest approach to solving this problem in to include in-
formation in the simulation script that describes which set of IP
addresses should be forwarded along which of the remote links.
Each remote link is given a list of prefixes that can be reached us-
ing this link, and the routing algorithms of each simulator include
that information when calculating routes.

A second approach is the use ofGhost Nodes. With the ghost
node approach, the remainingn� n=k nodes are also modeled on
each of the simulation processes, along with information about the
links connecting those nodes to others. These ghost nodes do in
fact use memory in each simulation process, but the ghost is a re-
duced state object, containing only connectivity information used
for routing decisions but none of the other objects normally associ-
ated with full-state nodes.1 By usingGhost Nodes, each simula-
tor has a complete picture of the overall topology of the simulated
network and can make routing decisions, but only has full state
representations for those nodes mapped to that simulator in the dis-
tributed simulation.

A scalable simulator must also have fine grained control over
logging of simulation events. When running large–scale simula-
tions, the total number of simulation events processed can be exces-
sively large, potentially trillions or more. Given this large number
of events, it is not practical to log a complete record (on disk files)
of all simulation events for post–analysis. WithGTNetS, the events
that are logged are completely controlled by the simulation script,
with very fine grain control. For example, the simulation program
can request that log entries be created only for layer 4 protocols at
specific nodes in the topology. Further, all logging can optionally
be disabled at selected nodes (such as interior routing nodes). For
a given protocol layer, the logging of individual data items can be
turned on or off. For example, we can specify that for any TCP
header that is logged, the sequence numbers are to be logged, but
the checksum field is not. Finally, an individual flow can be tagged
with a forced loggingflag, that would cause every packet in this
flow to be logged, even if logging is disabled along the path.

GTNetSuses NIx-Vector routing [13, 14] as the default packet
routing mechanism. The NIx-Vector approach does not calculate
an all–pairs shortest–path–first graph and does not create routing
tables. Instead, the routes are calculated on demand, and cached
using a compact representation called a NIx-Vector. While this is
not in fact the way existing networks are designed, the resulting
savings in simulator memory is believed to be a beneficial trade-
off. For those simulation experiments that do require the existence
and maintenance of routing tables, a routing–table based routing
method is also included.

To assist with creating large–scale simulation experimentsGT-
NetShas a single object that creates a random topology based on
the existingGeorgia Tech Internet Topology Modeler(GTITM)[18].
When theGTITMobject is constructed, parameters are passed spec-
ifying the desired average degree, average leaf counts, and average
transit node counts. Once theGTITM object is created, member

1As of this writing, the Ghost Node implementation is work in
progress inGTNetS.

Proceedings ot the ACM SIGCOMM 2003 Workshops 6 August 2003

functions for theGTITM object allow for querying node counts,
subnetwork counts, leaf node identifiers, and other information about
the random topology that can be used to create and manage the sim-
ulation.

2.2 Extensibility and Ease of Use
The simulator is written entirely in C++ using an object–oriented

design methodology. To use the simulator, the simulationist creates
a C++ main program, instantiating C++ objects to represent the
various network elements comprising the simulation. Most of the
supplied C++ objects that encapsulate the functionality of network
elements usevirtual functions, to allow easy extension and mod-
ification of behavior. For example, there is a single virtual base
class describing the behavior of a Queue. All queuing methods,
such asDropTail andRED, use a subclass of queue to define their
behavior. As another example, the basic functionality of theTCP
protocol is found an abstract baseTCP class (called, not surpris-
ingly, TCP). Each of theTCP variants uses this as a base class,
and simply redefines the desired behavior by overriding the neces-
sary methods. With this approach, the class that implementsTCP
Renois only about 100 lines of code. A similar object oriented
approach was used in theOMNet[16, 17] simulator, which is a gen-
eral purpose simulation environment that can be adapted to create
network simulations. Thens2 simulator is designed with a mix-
ture of Tcl, otcl andC. SSFNetis written entirely inJava, but the
model descriptions are specified using a non–standard text–based
description language.

The simulator is designed like real networks are designed. InGT-
NetS, there is a clear distinction between nodes, interfaces, links,
and protocols.Nodeobjects represent the basic functionality of a
network node (either a router or end–user system), and contain one
or moreInterfaceobjects. Each interface object has anIP Address
and associated network mask, as well as aLink object encapsulat-
ing the behavior of the transmission medium. Packets inGTNetS
consist of a list ofProtocol Data Unitobjects (PDUs). This list
is created and extended while a packet moves down the protocol
stack through the various layers. When moving up the stack, each
protocol layer removes and processes the corresponding protocol
header in a fashion closely modeling a real protocol stack. Each
protocol layer communicates with the layer below it by invoking
a DataRequestmethod, specifying the packet (and current state of
the PDU stack), and any protocol specific information required by
the next lower layer. Similarly, protocols accept upcalls from the
layer below using aDataIndicationmethod. Layer 4 endpoints are
bound to port numbers, either well know fixed values or transient
ports, just like real layer 4 endpoints. Connections between layer 4
endpoints are by IP Address and Port Number, in a fashion nearly
identical to actual protocols. In general, when faced with a design
decision for the simulator, a design similar to actual networks was
chosen whenever possible. Thus, any user who has a good under-
standing of the design and operation of real networks will find that
GTNetSworks similarly.

Simulation models for a number of different random number
generators are provided, includingexponential, pareto, normal, uni-
form, empirical, andconstant. We have found the use of aConstant
random number generator particularly useful. TheConstantRNG
object returns the same constant value every time a new value is
requested. The constant value is specified when theConstantRNG
is created. ThisConstantRNG can be passed to any object need-
ing a random variable, such as the on or off time for an ON–OFF
data source. By passing thisConstantRNG to the ON–OFF data
source, it becomes a deterministic data source with on and off times
exactly the same every time. A large number of theGTNetSobjects

use random number generator objects during initialization, and the
use of theConstantRNG allows deterministic behavior where de-
sired.

GTNetSallows the specification ofDefault object types wher-
ever practical. For nearly every simulation object (links, queues,
protocols, etc.), a default value is provided that allows for creation
of this object without specifying details. For example, by specify-
ing the default queue object is aDropTail queue with a queue limit
of 60,000 bytes, the user would never need to specify what type
of queue (and what size) would be needed forInterfaceobjects.
If not specified, the default object is used. Similarly, the user can
specify the default TCP object is TCP Reno, with a window size
of 64,000 bytes. Then whenever an application object (such as a
Web browser) needs a TCP endpoint, the default will be used. All
default values can be specified by the user, and all default values
can be overridden on an instance by instance basis.

The simulator provides a number ofstock objectsfor creating
well–known topologies, such asstar, dumbbell, grid, andtree. By
using these stock objects, a single line of code can create a dumb-
bell topology with a random number of nodes on each end, and a
specified bandwidth restriction at the bottleneck. Once the dumb-
bell object is created, member functions can query the number of
leaf nodes, and returnNodeobject pointers to specific nodes in the
dumbbell. Similar capabilities could be included in thens2simu-
lator by addition of specialized objects representing collections of
nodes, but this is not presently included inns2.

Finally, GTNetSkeeps and optionally reports detailed statistics
about the simulator’s performance. These statistics include the
number of objects created, number of simulator events, memory
used, just to name a few, which assist the simulator user in iden-
tifying resource limitations or performance problems should they
occur.

2.3 Support for Popular Protocols
GTNetSincludes simulation models of a number of popular pro-

tocols at the application layer, transport layer, network layer, and
link layer, as discussed below. A protocol graph is used to map
protocol numbers to protocol objects, in a fashion similar to ac-
tual protocol stacks. At initialization time, the IPv4 implementa-
tion registers the use of protocol number 0x800 at layer 3. When
a packet is later received at any layer 2 protocol, the L3 protocol
number is extracted from the L2 header, and the the layer 3 pro-
tocol number is looked up in the protocol graph. A pointer to the
IPv4 instance is returned (for protocol number 0x800). Layer 4
works similarly, with TCP registering protocol number 6 and UDP
registering number 17.

2.3.1 Application Layer Models
The application models inGTNetSuse an interface very similar

to the familiarsocketsinterface to create and manage layer 4 con-
nections. There are equivalent functions to the familiarconnect ,
listen , send , sendto , andclose just to name a few. The
major difference between our implementation and thesocketsAPI
is the use of upcalls for received data, rather than the more famil-
iar blocking read calls from the socket library. In a discrete event
simulation environment, we cannot easily implement the behavior
of blocking system calls, and thus we use upcalls to achieve similar
results. However, withGTNetS, applications do receive notifica-
tions of incoming connection requests, connection refusals from
peers, connection closure from peers, and failed connections.

The web browser application inGTNetSis based on empirical
models reported by Mah in [7]. These empirical distributions are
used to determine the number of objects per web page, size of the

Proceedings ot the ACM SIGCOMM 2003 Workshops 7 August 2003

requests and responses, and the think time between page requests.
Our models also include detailed data collection of response time
per object, total number of objects, and total size of objects. The
web server model allows the enforcement of a limit on the number
of simultaneous connections processed, which provides a basis for
simulated denial of service style attacks.

For studying the behavior of popular Peer–to–Peer overlay net-
works, we have simulation models for the behavior of the Gnutella
protocol [1] and theGCache[2] web server scripts. OurGCache
model includes the querying of peerIP Addresses from the cache,
the posting of newIP Addresses, querying of otherGCachehosts,
and the posting of newGCachehosts. The Gnutella models include
the querying of theGCachesfor initial peer selection, connection
to peers (with both successful and unsuccessful connections), and
peers terminating connections. Using these models, large–scale
studies of Gnutella client initialization, peer discovery, peer selec-
tion, and content searching can be modeled in detail.

Finally, the simulator has models for the well–knownSyn–Flood
and UDP Stormdistributed denial of service attacks. Our TCP
server application models track the number of simulataneous con-
nections, and enforce a limit on ths count to model the behavior of
servers under this type of attack. When connections are refused,
a RSTpacket is returned to the requestor, who in turn retries the
connection after a delay period. Using these models, detailed study
of the affect of this type of DDoS attacks can be performed, under
a variety of conditions such as the number of attackers, frequency
of attack, duration of attacks, etc.

2.3.2 Transport Layer Protocols
TheGTNetSsimulator has models for TCP Reno, TCP NewReno,

TCP Tahoe, and TCP SACK. In addition, the design of the TCP
model uses a client/server paradigm identical to real TCP imple-
mentations. To create a web server for example, a single TCP end-
point is assigned to a node, bound to port 80. Connection requests
(SYN packets) received by this endpoint cause the creation of a
new TCP endpoint which responds to the connection request, and
the original TCP on port 80 continues to listen for SYN packets.
This is especially important for distributed simulations, since the
client and server may be on different processes, and will have no
direct way of communicating that a new server endpoint is needed.
With our approach, we simply define the server on a well–known
IP Addressand port, and any other endpoints can connect without
further action. To contrast this with the TCP client/server model
found inns2, thens2model requires the simulation script to manu-
ally create both endpoints of each connection before the connection
establishment process is initiated. This can cause difficulties in a
distributed simulation where the two endpoints are modeled in dif-
ferent simulator instances.

The simulator has detailed models for UDP datagram processing,
and several applications that generate data for UDP flows. These
data models include On–Off sources (with configurable probability
distributions for the On and Off times) and Constant Bit Rate data
sources.

GTNetShas full support for modelingdata contentsas well as
data length when moving data between layer 4 protocols. Most
current simulators, includingns2, do not provide an easy way for
applications to specify and receive data contents. Modeling data
contents is essential for a number of networking research simula-
tion experiments, including the Peer–to–Peer network models dis-
cussed above, as well as the behavior of routing protocols.

2.3.3 Network Layer Protocols

GTNetSuses IPV4 exclusively for the layer 3 protocol. There are
presently no models for IPV6, but the basic design of the simulator
with a protocol graph and protocol numbers in the layer 2 header
make the addition of these model possible at a future time.

For routing protocols, we presently have DSR for wireless route
discoveries, with AODV in progress. Further, we are presently
working on models for BGP[11] and Cisco’s EIGRP protocols for
wired networks.

2.3.4 Link Layer Protocols
Each interface in the simulator has an associated MAC address

and layer 2 protocol assigned, and these protocols create and utilize
an appropriate layer 2 PDU in the simulated packets. We presently
have layer 2 models for IEEE 802-3 [6] for wired networks and
IEEE 802.11 [5] for wireless. Support is included for link layer
broadcasts for Ethernet LAN segments.

Further, each interface has an associated queue object, which is
used to store packets to be transmitted when the link is available.
We presently have implemented models for simple DropTail queues
as well as the Random Early Detection (RED)[4] queues.

Nodes with wireless interfaces also have mobility models, and
support random initial node placement. A variety of placement
distributions are available, including uniform, bounded normal, and
bounded exponential. The mobility is based on a random waypoint
approach, but allows for the specification of specific predetermined
waypoints as well.

2.4 Built in Data Collection
GTNetShas a number of data summarization primitives, to as-

sist the user in gathering network performance statistics during the
simulation execution. For example, the Web Browser object has
an optionalhistogramobject that is used to trace the response time
for each requested web object. These histogram objects can then
be queried and printed, resulting in a cumulative distribution graph
(CDF) of the web response time.

Another example of the built in data collection methods is the
optional logging of sequence number versus time in aTCPconnec-
tion. If instructed to do so in the simulation program, any speci-
fiedTCPobject will track the sequence numbers sent and acknowl-
edged as a function of simulatin time, and will log this information
to a data file at the conclusion of the simulation. This can then be
plotted (for example withGnuPlot), to produce a graphical repre-
sentation of the behavior of theTCPconnection. Thens2simulator
can be used to produce a similar plot, but post–analysis (withAWK
or other scripting languages) of the trace file is necessary to achieve
this.

3. USING GTNetS
The GTNetSsimulator consists of a large number ofC++ ob-

jects which implement the behavior of a variety of network ele-
ments. Building and running a simulation usingGTNetS, consists
of creating aC++ main program that instantiates the various net-
work elements to describe a simulated topology, and the various
applications and protocols used to move simulated data through
the topology. TheC++ main program is then compiled with any
compiler that fully complies with theC++ standard2. After suc-
cessfully compiling the main program, it is linked with theGTNetS
object libraries, which are available both.a and .so format. The
resulting executable binary is simply executed as any other appli-
cation, which results in the simulation of the topology and data

2GTNetShas been compiled successfully on Linux with g++-2.96,
g++-3.x, Sun Solaris with SUNWS-CC and HPUX-CC (64 bit)

Proceedings ot the ACM SIGCOMM 2003 Workshops 8 August 2003

100Mbps, 5ms 100Mbps, 5ms

100Mbps, 5ms100Mbps, 5ms

10Mbps, 100ms

C1

C2

R1 R2

S1

S2

TCP Client 1

TCP Client 2

TCP Server 1

TCP Server 2

Figure 2: Sample GTNetS Topology

flows specified in the main program.
In this section, we give a small example of usingGTNetSto cre-

ate a simple topology and two data flows. An exampleGTNetS
simulation is given for the simple topology shown in figure 2, and
discussed in detail. In this simulation, there are six nodes, and two
TCP flows from clients to servers. Many of theGTNetSfeatures
will be used in this example, most of which were described in the
prior section. The main program for the example is shown in the
listing on the following page. Each line of the sample program will
be discussed briefly to describe it’s purpose in the simulation. After
reading through this example, the reader should have a basic under-
standing of the various functions provided byGTNetSand how to
use them.

Include Files. Lines 4 – 10 use the C/C++ include direc-
tive to include the definitions for the various network elements and
simulation objects used in this simulation. The necessary include
files will of course vary from simulation to simulation depending
on which of theGTNetSobjects are used in the simulation. A com-
plete listing of allGTNetSobjects and their corresponding include
files is given in theGTNetSreference manual.

Main Program. The C++main entry point is defined in line
12. All GTNetSsimulations must have aC++ main function.

Simulator Object. A single object of classSimulator must
be created by allGTNetSsimulations before any otherGTNetSob-
jects are created. In our example, theSimulator object is created
at line 15.

Defining the Trace File. Lines 17 – 22 specify the name of the
trace file and the desired level of tracing. For allGTNetSsimula-
tions, there is a single global object of typeTrace that manages
all aspect of packet tracing in the simulation. Line 18 uses the
Trace::Instance() function to obtain a pointer to the global
trace object. Line 19 specifies that allIP Addresss should be writ-
ten to the trace file indottednotation, such as 192.168.0.1. The de-
fault notation for loggingIP Addresss is 32 bit hexadecimal. Line
20 opens the actual trace file and assigns the nameintro1.txt .
Line 21 specifies that the flags field for allTCPheaders logged in
the trace file should use a text based representation for the flags
(such asSYN|ACK), rather than a 8 bit hexadecimal value. Line 22
specifies that allIPV4headers should be logged in the trace file for
every packet received and every packet transmitted at all nodes.

Create Simulated Nodes.Lines 24 – 30 create the node objects
representing the six network nodes in the sample topology. InGT-
NetS, node objects represent either end–systems (such as desktop
systems or web servers), routers, or hubs. Notice that when creating
Node objects, theC++ new operator is used to create then nodes,
rather than using a statically defined object (for example by saying
Node c1; Node c2;). This is due to the fact that node objects
(and in fact almost all of the topology objects) must exist for the

life of the simulation, and must not be destroyed until the simula-
tion completes. In this simple example, either method would work
correctly, since the nodes are being defined inside themain func-
tion, which does not exit until the simulation completes. However,
if the nodes are created in a subroutine (such asint CreateN-
odes() , they would not persist after theCreateNodes function
completed unless dynamically allocated withnew.

Create Simulated Links. Lines 32 – 43 create the five link ob-
jects in the sample topology. First, line 33 creates a point–to–point
link object of classLinkp2p . There are three things of interest
in this declaration. First are two arguments to the constructor for
Linkp2p objects, which specify the link bandwidth and propaga-
tion delay. The arguments are of typeRate t and Time t re-
spectively, which are both of typedouble . However, inGTNetS,
anytime a variable of typeRate t is required, an object of class
Rate may be used instead. Objects of classRate require a single
argument in the constructor, which is a string value specifying rates
using commonly recognized abbreviations for multipliers (such as
Mb). Similarly, anytime a variable of typeTime t is required, an
object of classTime may be used instead. Objects of classTime
require a single argument in the constructor, which is a string value
specifying rates using commonly recognized abbreviations for mul-
tipliers (such asms).

Secondly, notice that the objectl is statically allocated in this
case (it is not allocated using thenew operator), and will be de-
stroyed when the enclosing subroutine exits. This is the accepted
way of defining and parameterizing links, and will be discussed in
more detail below. Lines 35 – 38 specify the links connecting the
clients to routerr1 and the servers to routerr2 . Node objects have
a methodAddDuplexLink which creates links between nodes.
In this example, there are three arguments toAddDuplexLink ,
theNode pointer for the opposite link endpoint, the link object it-
self (l in this case), and anIP Addressfor the link endpoint. It is
important to note that theAddDuplexLink method makes acopy
of theLink object passed as the second parameter, rather than us-
ing it directly. Thus a single link object (l in this example) can be
passed to any number ofAddDuplexLink calls, and can subse-
quently be destroyed (when the subroutine exits) without causing
problems in the simulation.

Finally notice that the third argument toAddDuplexLink in
this example is theIP Addressof the local link endpoint. The argu-
ment must be of typeIPAddr t , which is defined byGTNetSto
beunsigned long . However, inGTNetS, whenever a variable
of type IPAddr t is needed, an object of classIPAddr may be
used instead. Objects of classIPAddr require a single argument
in the constructor, specifying the desiredIP Addressin the familiar
dotted notation. Lines 41 – 43 create the slower speed 10Mb link
object connecting the two routers,r1 andr2 .

Create the TCP Servers. The TCP server objects are created
in lines 45 – 51. Lines 46 and 47 create two objects of class
TCPServer , using thenew operator. Thenew operator is used
for reasons discussed above in theNode objects creation para-
graph. The constructor forTCPServer objects has a single pa-
rameter of classTCP, which specifies the variant ofTCPto be used
for this server object. Notice that, in this example, an anonymous
temporary objectTCPTahoe() is passed as the argument to the
TCPServer constructor. The constructor forTCPServer makes
a copy of the supplied object, rather than using it directly. The
anonymous temporaryTCPTahoe object is destroyed when the
constructors at lines 46 and 47 are complete. Lines 48 and 49 as-
sign theTCPServer objects to nodess1 ands2 respectively, and
bind to port 80. Lines 50 and 51 specify that allTCPheaders should
be logged in the trace file for all received and transmitted packets

Proceedings ot the ACM SIGCOMM 2003 Workshops 9 August 2003

1 // Simple GTNetS example
2 // George F. Riley, Georgia Tech, Winter 2002
3
4 #include "simulator.h" // Definitions for the Simulator Object
5 #include "node.h" // Definitions for the Node Object
6 #include "linkp2p.h" // Definitions for point-to-point link objects
7 #include "ratetimeparse.h" // Definitions for Rate and Time objects
8 #include "application-tcpserver.h" // Definitions for TCPServer application
9 #include "application-tcpsend.h" // Definitions for TCP Sending application

10 #include "tcp-tahoe.h" // Definitions for TCP Tahoe
11
12 int main()
13 f
14 // Create the simulator object
15 Simulator s;
16
17 // Create and enable IP packet tracing
18 Trace* tr = Trace::Instance(); // Get a pointer to global trace object
19 tr->IPDotted(true); // Trace IP addresses in dotted notation
20 tr->Open("intro1.txt"); // Create the trace file
21 TCP::LogFlagsText(true); // Log TCP flags in text mode
22 IPV4::Instance()->SetTrace(Trace::ENABLED); // Enable IP tracing all nodes
23
24 // Create the nodes
25 Node* c1 = new Node(); // Client node 1
26 Node* c2 = new Node(); // Client node 2
27 Node* r1 = new Node(); // Router node 1
28 Node* r2 = new Node(); // Router node 2
29 Node* s1 = new Node(); // Server node 1
30 Node* s2 = new Node(); // Server node 2
31
32 // Create a link object template, 100Mb bandwidth, 5ms delay
33 Linkp2p l(Rate("100Mb"), Time("5ms"));
34 // Add the links to client and server leaf nodes
35 c1->AddDuplexLink(r1, l, IPAddr("192.168.0.1")); // c1 to r1
36 c2->AddDuplexLink(r1, l, IPAddr("192.168.0.2")); // c2 to r1
37 s1->AddDuplexLink(r2, l, IPAddr("192.168.1.1")); // s1 to r2
38 s2->AddDuplexLink(r2, l, IPAddr("192.168.1.2")); // s2 to r2
39
40 // Create a link object template, 10Mb bandwidth, 100ms delay
41 Linkp2p r(Rate("10Mb"), Time("100ms"));
42 // Add the router to router link
43 r1->AddDuplexLink(r2, r);
44
45 // Create the TCP Servers
46 TCPServer* server1 = new TCPServer(TCPTahoe());
47 TCPServer* server2 = new TCPServer(TCPTahoe());
48 server1->BindAndListen(s1, 80); // Application on s1, port 80
49 server2->BindAndListen(s2, 80); // Application on s2, port 80
50 server1->SetTrace(Trace::ENABLED); // Trace TCP actions at server1
51 server2->SetTrace(Trace::ENABLED); // Trace TCP actions at server2
52
53 // Create the TCP Sending Applications
54 TCPSend* client1 = new TCPSend(TCPTahoe(c1),
55 s1->GetIPAddr(), 80,
56 Uniform(1000,10000));
57 TCPSend* client2 = new TCPSend(TCPTahoe(c2),
58 s2->GetIPAddr(), 80,
59 Constant(100000));
60 // Enable TCP trace for all clients
61 client1->SetTrace(Trace::ENABLED);
62 client2->SetTrace(Trace::ENABLED);
63
64 // Set random starting times for the applications
65 Uniform startRv(0.0, 2.0);
66 client1->Start(startRv.Value());
67 client2->Start(startRv.Value());
68
69 s.Progress(1.0); // Request progress messages
70 s.StopAt(10.0); // Stop the simulation at time 10.0
71 s.Run(); // Run the simulation
72 cout << "Simulation Complete" << endl;
73 g

Proceedings ot the ACM SIGCOMM 2003 Workshops 10 August 2003

for theseTCPendpoints.
Create the TCP Clients. The TCPclient applications are cre-

ated in lines 54 – 62. The objects of classTCPSend are created
using thenew operator, as previously discussed.TCPSend con-
structors have four parameters, as follows. First is a temporary
object of classTCP(or any subclass ofTCP) that specifies theTCP
variation to be used for thisTCPclient. Notice that in this case, the
constructor for the temporaryTCPobject specifies the node object
that is associated with the correspondingTCPendpoint (c1 in line
54, andc2 in line 57). The second and third arguments are the
IP Addressand port number of theTCPserver to which a connec-
tion is made. The second argument in this example illustrates the
GetIPAddr method forNode objects, which returns theIP Ad-
dressof the node (or the firstIP Addressif the node has more than
one). The last parameter is a temporary object of classRandom(or
any subclass ofRandom), which specifies a random variable that
determines how much data to send to the server. The first client
specifies aUniform random variable at line 56 which returns a
uniform value between 1000 and 10,000. The second client speci-
fies aConstant random variable, that returns the constant value
100,000. Lines 60 – 62 enable tracing of theTCPheaders for all
packets sent and received by these endpoints.

Start the Client Applications. Lines 64 – 67 tell the simulator
to create the connections between the clients and servers. Line 65
defines a statically allocatedUniform random variable that will
return random values uniformly in the interval [0.0, 2.0). Lines
66 and 67 use theStart method common to allTCPapplications
that specifies when the application should create the connection and
begin sending the data.

Start the Simulation. Line 69 uses theProgress method of
classSimulator to request a message be printed onstdout
every 1.0 seconds of simulation time, indicating the simulation is
progressing in time. Line 70 calls theRun method ofSimula-
tor , to run the simulation. TheRun method does not exit until the
simulation completes.

4. SCALABILITY EXPERIMENTS
Since theGeorgia Tech Network Simulatorwas designed to sup-

port large–scale experiments, we set out to determine how large of
a network topology we could create and successfully simulate. Us-
ing our account on the Pittsburgh Supercomputer Center (PSC), we
created a scalable simulation based on theCampus Network(CN)
topology defined by Nicol[9], as shown in figure 3. Each CN con-
sists of 538 nodes, including 504 leaf client nodes and 4 server
nodes. An arbitrary number of campus networks can be connected
together with high–speed links between the gateway router nodes
of each campus. For data flows in these experiments, each leaf on
a campus network randomly selects a server on an adjacent CN,
and establishes a TCP connection with it. Each connection sends
a total of 500,000 bytes and terminates. By distributing a number
of campus networks on each of a number ofGTNetSinstances, the
total scale of the network and amount of data processed can grow
arbitrarily large.

Some preliminary results of our scalability experiments are given
in table 1. The Pittsburgh Supercomputer Center system consists
of 750 systems, each with four HP Alpha CPU’s and 4Gb of main
memory. The systems are connected via a Quadrix high–speed in-
terconnect. We assigned four simulation processes on each PSC
system (one per CPU), and varied the number of systems from 1
to 32, giving a total number of simulation processes varying from
4 to 128. As a baseline, we also ran the single CPU case. For
these results, each simulation instance modeled a total of seven
campus networks, for a total 3,766 nodes and 3,556 flows per in-

Other Campus

= 4 x 100Mbps Ethernet LANs, 42 Clients

0:1

0:2

0:0

Net 0
1:0

1:1

1:2

1:3

1:4

1:5

Net 1

2:0 2:1

2:2 2:3

2:4

2:6

2:5

4 5

3:0 3:1

3:2 3:3

Net 2 Net 3

TCP Servers

Gateway to

Figure 3: Campus Network Topology

stance. Clearly, as the number of CPUs assigned to the distributed
increases, the total topology size and number of flows modeled in-
creases linearly. As can be seen from the table, we have to date
completed a simulation of 482,048 nodes and 455,168 TCP flows,
which processed more than 4 billion simulated packet transmission
events. Each of these simulations completed in less than 15 min-
utes, including all initialization overhead. Further, the table shows
thatGTNetSshows good scalability in terms of performance as the
number of simulation instances increases. The simulation running
on 128 CPUs does take longer than the single CPU case (869 sec-
onds versus 562 seconds), but recall that it is modeling 128 times
as many flows and packets. The difference in execution time is due
to the time synchronization and message passing overhead between
the simulation instances in the distributed simulation environment.

A pencil and paper analysis of the memory usage shows that,
within the memory constraints of a single system at PSC, we should
be able to support four processes of 20 CN’s per processor on a sin-
gle PSC system. Given this, we fully expect simulation topologies
exceeding several million nodes to be completed in the near future.

We point out that, while we did in fact set out to design and
implement an efficient simulation environment, our objective was
not to create a tool where performance is the only important met-
ric. The performance of a network simulator is a function of a
number of variables, and design tradeoffs. For example,GTNetS
has substantial detail in the layer 2 IEEE 802-3 model, including
preparation and processing of a layer 2 PDU as packets are trans-
mitted and received. This results in extra per–packet event pro-
cessing overhead, as compared tons2andSSFNetwhich have no
such models. Further,GTNetSchecks for local network routes and
broadcasts in the layer 3 processing, as well as looking up the layer
4 processor in a protocol graph, which again results in some extra
per–packet overhead. Design decisions such as this were made to
insure the simulator works much like real networks work, and to
facilitate future addition of protocols such as Address Resolution
Protocol (ARP)[10].

Preliminary experiments comparingns2andGTNetSshow that
the simulation initialization time is substantially faster inGTNetS,

Proceedings ot the ACM SIGCOMM 2003 Workshops 11 August 2003

Number Systems Number Processors Simulated Nodes Simulated Flows Execution Time Simulated Pkts

1 1 3766 3556 562 sec 36955410
1 4 15064 14224 697 sec 146014864
2 8 30128 28448 723 sec 291981440
4 16 60256 56896 769 sec 583689248
8 32 120512 113792 753 sec 1167925760
16 64 241024 227584 787 sec 2332761088
32 128 482048 455168 869 sec 4662689280

Table 1: Scalability Experiments from PSC

roughly an order of magnitude faster. This difference is clearly due
to thens2design decision to use the interpreted Tcl language to de-
fine the simulation, with the resulting ease of use at the expense of
slower performance. Once the simulation begins processing events,
ns2in fact runs somewhat faster thanGTNetS, due to the extra pro-
cessing details in theGTNetSlayer 2 and 3 models. We have not
yet done a performance study comparingGTNetSwith SSFNet, but
we expect that the performance will be comparable.

5. SUMMARY
TheGeorgia Tech Network Simulatoris a full featured network

simulation environment that can be used for experimental network-
ing research on moderate to large–scale topologies. The design of
GTNetSis such that it is easy to learn and use. The object oriented
methodology in the design is such that it can be easily extended to
support new variations on existing networking methodologies. The
simulator is efficient, both in the initialization overhead, and during
the actual processing of simulation events. This is evident from the
480,000 node topology simulation at PSC completing in less than
15 minutes.

The scalability experiments presented show nearly a half–million
node topology can be simulated on a moderately sized network of
workstations (32 workstations, 4 CPU’s each). Using more of the
available resources at PSC (there are a total of 3,000 procesesors
on 750 systems), we fully expect to be demonstrating simulations
of millions of nodes in the near future.

As previously mentioned, a tool designed for use by the network-
ing research community will never be complete. New reqirements
for network protocols and methods will certainly be needed as new
such methods are invented. We are continuing work on our simula-
tor, with students presently working on more wireless routing pro-
tocol (AODV and NixVector), and wired routing protocols (BGP
and EIGRP).

Our objective is to provide a tool that can be another option in the
set of tools available to networking researchers to study network
behavior in a simulation environment. We hope that it will be of
benefit to the community at large.

6. REFERENCES
[1] The Gnutella protocol specification. Software on-line:

http://www.gnutella.com, 2002. Gnutella.
[2] The gwebcache specification. Software on-line:

http://www.gnucleus.com/gwebcache/specs.html, 2002.
Gnucleus.

[3] J. Cowie, A. Ogielski, and D. Nicol. The SSFNet network
simulator. Software on-line:
http://www.ssfnet.org/homePage.html, 2002. Renesys
Corporation.

[4] S. Floyd and V. Jacobson. Random early detection gateways
for congestion avoidance.IEEE Transactions on Networking,
1(4):397–413, August 1993.

[5] IEEE. Ieee standard 802-11 wireless lan medium access
control (mac) and physical layer (phy) specification.Institute
of Electrical and Electronic Engineers, 1997.

[6] IEEE. Ieee standard 802-3 carrier sense multiple access with
collision detection(CSMA/CD) access method with physical
layer specifications.Institute of Electrical and Electronic
Engineers, 2000.

[7] B. A. Mah. An empirical model of http network traffic. In
Proceedings of IEEE INFOCOMM, pages 592–600, 1997.

[8] S. McCanne and S. Floyd. The LBNL network simulator.
Software on-line: http://www.isi.edu/nsnam, 1997. Lawrence
Berkeley Laboratory.

[9] D. M. Nicol. The baseline campus network explained.
http://www.cs.dartmouth.edu/ nicol/NMS/baseline/, 2002.
DARPA Network Modeling and Simulation (NMS).

[10] D. Plummer. Internet RFC826: Ethernet address resolution
protocol: Or converting network protocol addresses to 48.bit
ethernet address for transmission on ethernet hardware.
Network Working Group, Nov 1982.

[11] Y. Rekhter and T. Li. RFC 1771, border gateway protocol 4,
March 1995.

[12] G. F. Riley. The georgia tech network simulator. Software
on-line:
http://www.ece.gatech.edu/research/labs/MANIACS/gtnets.htm,
2003.

[13] G. F. Riley, M. H. Ammar, and R. M. Fujimoto. Stateless
routing in network simulations. InProceedings of the Eighth
International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems,
August 2000.

[14] G. F. Riley, M. H. Ammar, and E. W. Zegura. Efficient
routing using nix-vectors. In2001 IEEE Workshop on High
Performance Switching and Routing, May 2001.

[15] G. F. Riley, R. M. Fujimoto, and M. H. Ammar. A generic
framework for parallelization of network simulations. In
Proceedings of Seventh International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS’99), October 1999.

[16] A. Varga. The OMNeT++ distrete event simulation system.
Software on-line: http://whale.hit.bme.hu/omnetpp/, 1999.

[17] A. Varga. Using the omnet++ discrete event simulation
system in education.IEEE Transactions on Education, 42(4),
Nov 1999.

[18] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to
model an internetwork. InProceedings of IEEE Infocom 96,
1996.

Proceedings ot the ACM SIGCOMM 2003 Workshops 12 August 2003

