A Protocol for Anonymous Communication
Over the Internet

Clay Shields
Dept. of Computer Science
and CERIAS
Purdue University
West Lafayette, IN 47907

clay@cerias.purdue.edu

ABSTRACT

With the growth and acceptance of the Internet, there has
been increased interest in maintaining anonymity in the
network. This paper presents a new protocol for initia-
tor anonymity called Hordes, which uses forwarding mecha-
nisms similar to those used in previous protocols for sending
data, but is the first protocol to make use of the anonymity
inherent in multicast routing to receive data. We show this
results in shorter transmission latencies and requires less
work of the protocol participants, in terms of the messages
processed. We also present a comparison of the security and
anonymity of Hordes with previous protocols, using the first
quantitative definition of anonymity and unlinkability. Our
analysis shows that Hordes provides anonymity in a degree
similar to that of Crowds and Onion Routing, but also that
Hordes has numerous performance advantages.

1. INTRODUCTION

The rapid public acceptance of the Internet as a means
of communication and information dissemination is creating
previously inconceivable opportunities for gathering infor-
mation about individuals. This is due to the fundamental
nature of the Internet Protocol (IP) that is used to commu-
nicate across the network. Each IP packet carries the IP
address of the machine that sent the packet, as well as the
IP address of the intended recipient of the packet. Under
normal communication, any eavesdropper, a machine that
sits on the network along the path a packet travels, can
easily determine what entities are communicating, and any
recipient of a packet is able to determine the source directly
from received packets. While IP addresses do not neces-
sarily uniquely identify an individual, it may be possible to
link even dynamically assigned IP numbers to an individual
if they access different services with the same assigned ad-
dress, or if records are available about whom was assigned
which address during a particular period. Such monitor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCS’00, Athens, Greece.

Copyright 2000 ACM 1-58113-203-4/00/0011 ..$5.00

Brian Neil Levine
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01060

brian@cs.umass.edu

ing and information gathering activities by eavesdroppers
or recipients of packets can adversely affect persons commu-
nicating over the Internet.

The realization that some solution is needed for providing
privacy and anonymity on a network is not new [6, 7, 14,
11, 10, 5], and previous work has successfully provided solu-
tions for Internet anonymity. In this paper, we present a new
protocol for providing anonymous communication on the In-
ternet called Hordes, which provides a level of comparable
anonymity to recent protocols [10, 11] while reducing the
amount of work required of participants, as well as signifi-
cantly reducing the latency of data delivery and the link uti-
lization. Hordes achieves these reductions by making use of
multicast communication, and is the first protocol designed
to provide anonymity that does so. We introducte an ex-
plicitly quantitative definition of anonymity and show that
Hordes maintains comparable anonymity to similar proto-
cols at all times. Additionally, we compare the performance
of Hordes and previously proposed protocols to overt com-
munication on the Internet with network simulations.

In Section 2, we overview related work and provide a brief
review of multicast routing, which Hordes uses to reduce the
overhead required of participants. In Section 3, we introduce
a quantitative method of comparing the anonymity provided
by anonymous protocols. In Section 4, we provide a detailed
description of Hordes. In Section 5, we discuss the relative
performance of our technique to two past approaches. We
offer concluding remarks in Section 6.

2. BACKGROUND

In this section, we describe past work that influenced the
development of Hordes and review multicast routing, a one-
to-many network service that Hordes uses to provide receiver
anonymity while reducing data delivery latency.

2.1 Previous Work

A common and simple solution for providing anonymity
to the initiator of an Internet connection is to use a prozy,
which is a single server that accepts connections from the
initiator of an anonymous connection and forwards them on
to the responder, i.e., the host that the initiator wishes to
contact anonymously. With this single-proxy method, all
the responders ever learn is the proxy’s address; thus, the
initiator is anonymous to the responder. For example, the
Anonymizer [15] and the Lucent Personalized Web Assis-
tant (LPWA) [3] provide anonymity using such methods.

They also provide additional services, the Anonymizer re-
moving identifying information from the data stream, and
the LPWA maintaining a number of anonymous identities
for each user. When using a proxy, the initiator is anony-
mous from the responder and any eavesdropper on the path
from proxy to responder. While this may provide adequate
anonymity in many cases, the proxy itself can determine
the initiator’s identity. (In this paper, the IP address of an
entity is equivalent to its identity.) In situations where an-
onymity with respect to all entities on the path is required,
some other solution is necessary. There are cryptographic
solutions that provide a high degree of anonymity [7, 14],
though at a high cost in terms of network traffic and process-
ing. In this paper we concern ourselves with more efficient
protocols that may be less secure.

2.1.1 Onion Routing

Our work is compared directly against two protocols in
particular. Due to space limitations are unable to review
their operation in detail.

The Onion Routing protocol [10], which is based upon the
idea of mixes [5], is more robust than single-proxy methods
for anonymous communication. In Onion Routing, a series
of proxies communicating over encrypted channels cooper-
ate to forward data to a responder. Data is wrapped in a
series of encrypted layers that are peeled-off at a series of
proxies (onion routers) along a path towards the responder.
Additionally, mix-type multiplexing is employed to thwart
traffic analysis.

It is assumed that each onion router knows the identities
and public keys of each other onion router. The initiator, I,
begins by choosing a route through the other onion routers
to the responder R. For each onion router on the path, o,
the initiator constructs a layer of a connection setup packet
consisting of the IP address of the next onion router, the
encryption key seed information shared with the next onion
router k, and the successor’s layer. The inner-most layer
of the onion contains the identity of the responder and the
data to be sent. Each layer is encrypted with the public key
of the corresponding router, K,;. Each onion router pair
uses a locally unique anonymous connection identifier (aci)
so that subsequent communication does not require sending
another onion.

I -0 aci,k, {0, K, {o", k" {R, data} i, Y, }cos
2

As the packet is forwarded through the path of onion routers,
the layers are peeled off. When the packet reaches the last
onion router in the path, the data is forwarded directly to
the responder. All requests from the initiator are sent along
the same path of onion routers. Replies are sent to the last
onion router on the path, which in turn forwards the data
along the reverse path of onion routers towards the initiator.
In implementation [2], Onion Routing is not typically de-
ployed at every host. Instead, a number of dedicated onion
routers are available for use, and an initiator must connect to
one of these to contact the receiver. The first onion router
thus knows all initiators it is servicing. Should an onion
router be corrupted, all initiators that use that router could
be exposed.

2.1.2 Crowds

The Crowds protocol [11] is similar in operation to Onion

Routing, however, the path through cooperating proxies is
chosen randomly, on a hop-by-hop basis, as the initial re-
quest is forwarded through the crowd. Once a path out of
the crowd is chosen, it is used for all anonymous communi-
cation from the initiator to any responder within a 24-hour
period.

Crowds begins with an initialization protocol. When com-
plete, the initiator knows a private, symmetric key between
itself and every jondo in the crowd. To send data, the initia-
tor constructs and forwards a packet containing a random
path id, p, the IP address of the responder, and the data are
all encrypted with the key Kj;, shared with the randomly
chosen next jondo, j.

I _).7 :{R’pa data‘}KIj (1)

Each crowd member receiving a packet with a new path id
then randomly decides based on a probability of forwarding,
0.5 < Py < 1, whether to forward it on to the responder or
to another randomly chosen jondo. Eventually, a jondo will
decide to forward the packet to the responder based on Ps.

j — R:p”, data (3)

Once the responder receives the packet, it returns a reply
packet along the reverse path of the request. Subsequent
packets between the initiator and responder always follow
the same path. This use of static paths is necessary because if
a number of jondos collaborate to discover the identity of an
initiator, then each new path that is formed gives them the
opportunity to narrow down the identity of an initiator. The
initiator must be on each path, and therefore shows up more
often than any other jondo. To limit the number of paths
available to collaborators, Crowds only changes paths at a
set period, typically every 24 hours. The use of static paths
can lead to a slightly different problem. If new members that
join immediately create a path, they can be easily identified
as new members by the first jondo they reach if most or
all other crowd members have already established paths. A
new member should wait until the next commit to form a
path out of the crowd, and every initiator must flush and
recreate all existing connections through the crowd.

While the identities of the crowds members are public
knowledge, responders, eavesdroppers, and other crowds mem-
bers never learn which particular crowd member is the ini-
tiator, as it is not easy to determine if the a successor on
a path is sending its own message or forwarding one of an-
other member. In this case, each member of the crowd gains
anonymity at the cost of bandwidth in forwarding others
communications.

2.2 Multicast Routing

A rapidly growing number of routers and hosts on the
Internet are beginning to support multicast communication
— point-to-multipoint delivery between hosts on a network.
Multicast, class-D addresses, unlike other IP addresses, do
not refer to any particular device attached to the network;
instead, they are essentially a label that refers to the re-
ceivers in the group as a whole, without knowledge of any
particular receiver or of group membership. The number
of hosts joined to a multicast routing tree as receivers, as
well as their status is dynamic and unknown to routers and
hosts. It is these properties that make multicast useful for
anonymity.

Hordes makes use of multicast communication for the re-
verse path of anonymous connections. This has several ad-
vantages. First, multicast group membership is not known
to any single entity; it takes the coordination of all routers
in the tree to determine the receiver set. Getting such coop-
eration across multiple administrative domains has proven
to be difficult in the past. Second, even if the membership
of a particular multicast group is determined, the actual
initiator is still indistinguishable within that set as the in-
tended recipient, as long as it is not the only member of the
multicast group.

Hordes is designed to place many participants in the same
group for reception. Using multicast for anonymous recep-
tion thus provides anonymity in several ways. First, the
destination IP address placed in reply packets is the multi-
cast group address and not any host’s IP address. Second,
it is difficult to determine the membership of the multicast
group. Third, even if the group membership is discovered,
there exists anonymity within the receiver set.

3. DEFINING ANONYMITY

Measures of anonymity proposed in previous work have
been informal and do not include definitions suitable for
quantitative analysis. Pfitzmann and Waidner have pro-
posed the concept of unlinkability between the initiator and
responder, where these two entities cannot be identified as
communicating with each other, though it may be clear they
are participating in some communication [14]. Syverson and
Stubblebine have given epistemic characterizations of some
properties of anonymity [13]. Reiter and Rubin informally
defined degrees of anonymity that can exist between an ini-
tiator and responder [11], but the differences between these
degrees can be vague. Here, we define anonymity precisely.
It is important to note that when defining anonymity of an
entity in the network, we do so with respect to some other
single entity. We will see that anonymous protocols do not
always provide uniform degrees of anonymity with respect
to all entities in the network; therefore the particular entity,
e, must be specified.

Let Pr.(z) be the probability that entity « is the initiator
of a connection, as assigned by entity e. Let = be a member
of non-empty set S, where } - Pre(y) = 1 Often situations
arise where such probabilities can be assigned. Attackers can
disrupt equiprobability, for example by analyzing predeces-
sor information over time, as discussed in Section 4.2. Let
dz.e(A) be the degree of anonymity provided for some entity
x with respect to another entity e while using a specified
anonymous protocol A.

dze(A) = Z Pre(y) 1)

yES#x

Equivalently, d;,.(A4) =1 — Pre(z).

The protocols explored in this paper attempt to make a
set of cooperative hosts all appear to have equal probabil-
ities. If all members of S have an equiprobable chance of
being the initiator, then dg(A) =1 —1/|S|. In examining
the security of protocols in Section 5, we will assume a pos-
sibilistic approach and assume equiprobability. This is con-
sistent with other approaches to examining anonymity [13].
When we refer to d,. without a specified protocol, we are
stating a rule that applies to all protocols.

We define the overall degree of anonymity provided by a

protocol for a set of collaborating entities S,
d(A) = min{ds..(A)},Ye € E,Nx € S (2)

where S is the set of entities whose anonymity is maintained
by the protocol A, and where E is the set of all entities in
the network.

Reiter and Rubin loosely defined several intervals of de-
grees of anonymity. Here we re-state their definitions and
add formal probabilistic equivalences.

e Provably Ezposed: the attacker can prove x is the ini-
tiator. dg,e = 0.

e Exposed: there exists a possibility that z is not the
initiator. 0 < dg.e < 3.

e Probable Innocence: x appears no more likely to be the
initiator than not to be the initiator, but z appears
more likely than all other entities. % <dg,e < dy,e, for
all y # ¢ € S. It follows that ds.e < (1~ 57).

e Beyond Suspicion: x appears no more likely to be the
initiator than any potential entity in the system. |S| >
L, (1~ g) <doe, and dye <do forally#zeS.

e Absolute Privacy: The attacker cannot perceive the
presence of communication. Let |S| = co and we define
dse=1.

When entity z is probably innocent at least, we say min-
imal anonymity has been achieved.

The protocols that we consider in this paper protect the
anonymity of the initiator. We define the following formal
requirements for initiator anonymity.

1. The initiator achieves minimal anonymity among other
hosts as the originator of a message destined for a
known responder.

2. The initiator achieves minimal anonymity from other
hosts as is the intended recipient of a message origi-
nated by a known responder.

These two conditions are necessary and sufficient for the pro-
vision of initiator anonymity. In the case that the initiator
is exposed but the responder is not, the protocol is no longer
anonymous with respect to the initiator, but it is unlinkable
as the identity of the responder is unknown. This concept
is important because even when a protocol does not provide
anonymity for the initiator, it may provide unlinkability. In
some situations, discovering that an entity is communicat-
ing anonymously may not be a sufficient for the attacker, in
which case unlinkability is a desirable property of a protocol.

The protocols explored in this paper attempt to make a
set of cooperative hosts all appear to have equal degrees of
anonymity. We can see that increasing the cardinality of
S has diminishing returns on the degree of anonymity. For
equal degrees of anonymity among a set S, |S| = 20 is much
more anonymous than a set |S| = 2 entities; however, a set
S with 220 entities is not significantly more anonymous than
one with 202. For equiprobability, as S increases, increas-
ingly large jumps in the size of S are required to quantita-
tively say a protocol has significantly increased its provided
anonymity.

It is not sufficient to judge an anonymous protocol solely
by the degree of anonymity it provides. The security of the

protocol must also be considered. Against any anonymous
protocol there may be various attacks, but the successful
completion of the attacks may require varying amounts of
resources from attackers. For example, a protocol by Waid-
ner and Pfitzmann [14] relies on strong cryptographic-based
message passing to provide anonymity. While the resources
required by an attacker to break the protocol are relative
large, the protocol provides no greater degree of anonymity
than Hordes or Crowds when protecting the same number of
participants. That is, all three protocols provide the same
degree of anonymity for the same number of cooperating en-
tities involved in the protocol, but the protocol by Waidner
and Pfitzmann provides the greatest security against attack-
ers.

The best protocols for anonymity have a number of quali-
ties. First, they do not require increased amounts of work or
resources on the part of initiators and cooperative entities
as the degree of anonymity increases. Second, the amount of
work or resources required by an attacker to break an anony-
mous protocol should increase (or at least not decrease) as
the degree of anonymity increases. Third, the amount of
work required of attackers should be significant. Finally,
third-party entities should not be trusted with the identi-
ties of initiators.

4. HORDES

Hordes employs multiple proxies similar to those used in
the Crowds protocol to anonymously route a packet towards
the responder, but then uses multicast services to anony-
mously route the reply to the initiator. Performance results
presented in Section 5 demonstrate that Hordes has a little
more than half the round trip latency of Crowds, does not
require large routing tables at hosts, is not subject to a pas-
sive traceback attack, often uses fewer network resources,
and requires less work from cooperating jondos.

Initialization. Initialization occurs in five steps. The pur-
pose of initialization is to provide new horde members with
an authenticated, “fresh” list of other horde members. First,
the initiator sends the server a request to join the Horde;
included with the request is the IP address of the initiator
IP;, a nonce, Ny, and the initiator’s public key K. Notice
that the limiting factor in joining the Horde is the IP ad-
dress; the public key may be generated just for the purposes
of participating in the protocol and does not have to be part
of any public key infrastructure. We do assume that each
member of the Horde possesses the server’s public key. Such
participating hosts are called jondos in the Crowds protocol,
and for clarity we conform to this convention, though in the
specification we will refer to hordes members as h.

I—S:IP;,Ni, Ky (1)

The server responds with a signed join acknowledgment that
consists of a new nonce and a repetition of the initiator’s
nonce. The purpose of the exchange of nonces is to ensure
that the protocol run is fresh, thereby limiting the ability of
an attacker to replay messages to the server.

S—1T: [NI,NS]KS_ (2)
The initiator replies with a signed copy of the nonces.

I— S:[Ni,Nslk,_ (3)

If the nonces are correct, the server sends a multicast base
address M used by all horde members (explained below) and
a list of all other hordes members and their public keys. The
server ensures that the list is fresh by including the nonces,
and authenticates the list by signing it.

S—)I:[M,IPh,Kh+,N1,N5]KS_,VhEH (4)

The server then informs the entire horde that I has joined
by sending a single multicast message. The announcement
includes a timestamp, T'S, to ensure the update is not a
replay.

S—H: [IPI,K1+,TS]KS_ (5)

Data Transmission through the Horde. Note that since a
Hordes initiator is sending to the responder via unicast and
receiving replies via multicast, it cannot use standard TCP
connections. Instead, a TCP connection between the re-
sponder and the initiator must occur encapsulated within
UDP packets transferred between each jondo on the forward
path, and within the UDP packets multicast to the initiator
from the responder. If the responder were not aware of the
hordes protocol, it could form a TCP connection to the last
member of the hordes. The last member could multicast the
data back to the initiator.

Step 1. The initiator (and each other jondo) randomly
picks a small subset of jondos s C H used to forward mes-
sages, and sends each a symmetric key, K¢, encrypted in
the forwarder’s public key and signed with its own private
key. The reason for and advantages of selecting a subset of
forwarders is discussed below, in section 4.2.

I = s {[Kflr,_}rop, Vs M)

Step 2. The initiator randomly picks a multicast group,
m from the range M, which is the specific set of addresses
shared by all jondos in the Horde. Group address selection
is discussed in detail below, but the point of picking different
groups is to distribute receivers so that receivers do not listen
to all traffic. At this point, the initiator should join the
multicast group that it selected as a receiver.

To forward data, the initiator sends a message to a random
jondo in its forwarding subset, h € s. The message includes
the address of the responder, R, the multicast group m on
which the responder will send replies, a random number used
later to identify a particular reply on the multicast tree, ¢d,
and the data. The random number needs to be large enough
to minimize the chance that a collision will occur if some
other jondo choose to receive on the same multicast group
— 128 bits should be sufficient. This portion of the message
is encrypted with a symmetric key Ky, and prefaced with
a key identifier, 7, both of which are shared with the next
forwarding hop. Key identifier and key distribution between
proxies is discussed in section 4.2 below.

I — h:i,{R,id, m, data} (2)

Step 3. At each jondo receiving a message, there is a proba-
bility 1 —py that the message is sent to the responder (Step
3). Otherwise, the jondo randomly picks another jondo from
its forwarding subset. We denote this successor jondo as h’.
The jondo sends the same form of message as in Step 1,
however, a different key identifier, ¢, and shared key K
are used.

j — R :i,{R,id, m, data}x , ®3)

Step 4. After a number of hops through the horde, the last
jondo (A’ in the notation below) forwards the message to
the responder.

h' — R :m,data,id (4)

Step 5. The reply is sent to the multicast group m. It is
prefaced with the random number, id, to identify it to the
receiver for easy reception from the multicast group.

R — m :id,reply (5)

4.1 Multicast Groups

In Hordes, the amount of work a jondo performs is de-
pendent on the number of messages it must process. This
is proportional to the number of forward paths the jondo
appears on, and the number of other jondos that choose the
same multicast group on which to hear replies. Notice that
receiving a message via multicast is actually cheaper compu-
tationally then forwarding a messages (as in Onion Routing
and Crowds), as the jondo needs only to check the random
ID to decide whether to accept or drop the packet.

In the next section, we see that the number of jondos that
choose the same multicast group for replies affects the an-
onymity provided by the protocol; therefore, it is possible
to tradeoff between workload and anonymity. Our desire in
the design of Hordes, however, is that no hordes member
should ever do more work than a Crowds or Onion Routing
member while always maintaining anonymity. Accordingly,
in this section we solsve for m, the number of multicast
groups among which hordes members should be evenly split
for reception of traffic. By distributing the hordes members
among different groups, we maintain anonymity while lim-
iting the number of messages each member must process.
The multicast addresses are chosen from a range starting
at the base multicast address M, shown in Step 4 of the
initialization of Hordes. As the number of members in the
Horde grows, the number of groups being used grows from
this base.

The requirement to provide minimal anonymity bounds
m from above; there should be at least two jondos in each
multicast group in case of a traceback attack. If there are n
hosts in a horde, then

m < n/2 (1)

The requirement that hordes members should do no more
work than Crowds members bounds m from below. The
amount of work Crowds members are subject to is depen-
dent on the number of other paths they appear on in the
crowd. This value has been derived by Reiter and Ru-
bin [11], and therefore the number of jondos in each mul-
ticast group should be less than or equal to this value:

% = _2Pf)2 (1+ni1) @

(1—ps)’n
2(1+ J:fl) R

It can be shown that m is bounded correctly by these values.
However, some jondos may be collaborators, and we do not
want to fill multicast groups with all collaborators but one
host. To protect the reverse path, the upper bound must

m >

not include any collaborators, which gives a new bound

n—=c¢

m < (4)
Reiter and Rubin [11] have determined that the forward
path in Crowds (and thus Hordes and Onion Routing) is
not secure if this ratio does not hold:

n> L2 _(c+1) (5)
PF—3

Equivalently, the limit of collaborators is

n(pr —3)
ps

where c is the number of collaborators in the session and py
is the probability of forwarding packets inside the Crowd or
Horde. Any more collaborators than allowed by the above
formula, and the forward path of Hordes does not maintain
anonymity. Combining Eq. 4 and 3 and then substituting
Eq. 6 gives

c< 1 (6)

n(ps—1)
Y n—2eiz3) 4y
A=ps)m pf)ln <m< —2 (7)
2(1+—n_1) 2

It is easy to show these inequalities hold for all values of
n and py. Shown in Figure 1 is a graph of the upper and
lower bounds for a quantitative representation of how much
these bounds differ with increased group size. Accordingly,
Hordes has adjustable amounts of work that changes with
m; however, the value of m also determines the degree of
anonymity of Hordes when subject to a traceback attack,
as discussed below. It is easy to see from the graph that
there is a large range in which Hordes provides anonymity
while requiring less work, in terms of message processing,
than Crowds. It is important to note that m is independent
of the network delays experienced by Hordes. Even when m
is set at the upper bound so that the work is comparable
to Crowds, the round trip latency exhibited with Hordes
remains the same, and is still significantly less than Crowds
(see Section 5).

It is important to notice that the random distribution of
hordes members into different multicast groups can, with
some small probability, result in a single hordes member
listening to a multicast group. This does not result in a vio-
lation of the anonymity of the protocol, as it would require
that an attacker be able to trace the multicast tree along
the entire Internet to determine that the receiver was alone.
Therefore, being the sole member of a group still provides
anonymity from the responder.

4.2 Forwarding Subset Selection

It may seem that each jondo could always choose the next
hop towards the responder randomly from the entire set of
jondos. Unfortunately, this leads to an attack against the
anonymity of the protocol first identified in Crowds [11].
Since each initiator must be a predecessor to some proxy at
least once on each path it creates, it will appear more of-
ten as a predecessor over multiple path creations than do
the randomly chosen proxies between it and the respon-
der. Collaborators in the group can compare information
about their predecessors over multiple path establishments,
and any entity who appears more often than others is very
likely the initiator of a path. Notice that with enough path

1400

1200 N\
N
NN

=
N -3 @ o
S =] <3 <]
=3 =3 =3 =3

Size of Multicast group range

N
o
=3

0
3000

group size

prob of forwarding

Figure 1: Lower plane: groups used to provide minimal anonymity. Upper plane: groups used for equivalent
amount of message processing by a jondo in the Crowds protocol. Between: greater-than-minimal anonymity

with less work than Crowds.

changes, even one corrupted jondo can gather the informa-
tion necessary to identify an initiator. As Hordes uses the
same forwarding mechanism as Crowds, it is subject to the
same path analysis attack. Instead of choosing a random
forwarder at each step, a small subset of all possible jondos
are chosen to forward all traffic to during each period. The
size of the subset is chosen so that the number of forwarders
in the set is on the order of the expected number of paths
a jondo would be on in Crowds. The expected number of
paths is computed from py and the number of jondos as in
Crowds [11]. This information is available to each jondo. Pe-
riodically, at each daily commit, this chosen subset changes.
Hordes is therefore approximately equivalent to Crowds in
its resistance to this attack, as the number of jondos that
see the initiator as a predecessor is the same in each proto-
col, and the subset changes at the same rate as paths do in
Crowds.

A symmetric key is generated and sent to each of the
members of the forwarding subset prior to data transmis-
sion. Data can then be encrypted in this shared key, re-
ducing the processing costs and reducing the forwarding la-
tency. Hordes has the same encryption processing overhead
as Crowds in forwarding messages.

Storage of these shared keys could be a concern, because
if the keys were stored indexed by the IP address of the
sender this would effectively serve as an indication of which
predecessors each jondo was forwarding for, enabling a pas-
sive traceback attack as described in Section 5.1.1. The
solution to this is to store shared keys for every jondo. At
commit time, when the new list of group members and keys
is received, each jondo can generate a false shared key for
each other group member. If a new shared key is received
from some neighbor, the false shared key can be replaced
with the actual one.

4.3 Onion Routing based Hordes

In this paper we have introduced a technique for anonym-
ity using multicast. We have concentrated on applying this
technique to the forward path taken by the Crowds protocol.
As we have considered the relative merits of Crowds, Hordes

and Onion Routing, it has become clear that the forward-
ing mechanism from mixes or Onion Routing could easily be
used on the Hordes forward path. While this might require
more work in terms of encryption, it would increase the secu-
rity and anonymity of the protocol, particularly against col-
laborators, as well as obviating the need for a Hordes-aware
proxy to run on each server. The next section discusses some
of the reasons why this type of forwarding might be more
desirable.

5. ANONYMITY,SECURITY AND PERFOR-
MANCE ANALYSES

In the first part of this section we analyze the compara-
tive anonymity and security of Onion Routing, Crowds, and
Hordes. We consider different attacks possible against each
protocol and give a quantitative analysis of the anonymity
provided in the face of each attack, based on the results of
Section 3. In the second part on this section, we consider
the network performance of Crowds, Hordes, and overt com-
munication over the Internet.

5.1 Anonymity and Security

We consider a number of attacks against each of the three
anonymous protocols. Table 1 summarizes the degree of ini-
tiator anonymity provided by each protocol in the presence
of such attacks. The degree is summarized by the value of
|S| (from Section 3) and assuming equiprobabilities; i.e., the
degree of anonymity is dy,. = 1 — ﬁ

In cases where the initiator is discovered but the respon-
der’s anonymity is maintained, and therefore unlinkability is
maintained, the section is marked “U” for unlinkable. The
size of S relevant to the responder’s degree of anonymity rel-
ative to the local eavesdropper is also given. In this chart,
n represents the number of cooperating entities participat-
ing, i.e., the number of onion routers or jondos; g represents
the number of initiators listening to a particular multicast
group (in Hordes we expect this value to be n/m); r repre-
sents the number of possible responders (which may equal n
if the assumption is made that each initiator is communicat-

Attack Required Resources | Onion Routing | Crowds Hordes

1. Observing Responder n n n

2. Single Protocol Member n n n

3. Active Path Traceback | network access n 1 Forward: 1
to entire path Reverse: g

4. Passive Path Traceback | access to member 1 1 Forward: n
routing information Reverse: g

5. Local Eavesdropper communication U:r U:r U:r/m
bottleneck

6. Local eavesdropper bottleneck, U:r 1 1

and on-path collaborator collaborator

7. Local eavesdropper and | bottleneck, 1 1 1

full path of collaborators many collaborators

Table 1: Size of S in Onion Routing, Crowds, and Hordes during various attacks.

ing with exactly one distinct responder); and m represents
the number of multicast groups being used for reception in
Hordes.

With respect to the responder and other members of the
participating group, each protocol provides an identical de-
gree of anonymity that is proportional to the number of
members in the group.

5.1.1 Pathtraceback

In a traceback attack, an attacker starts from a known
responder and traces the path back to the initiator along
the forward path or the reverse path. There are two types
of traceback attacks. In an active traceback attack, the at-
tacker has control over the network infrastructure and is
able to follow an active and continuing stream of packets
back through the network to their point of origin. If there is
only one stream, this is easy. If several streams are passing
through a particular host this may be more difficult, espe-
cially if the packets change form in the host, perhaps by be-
ing encrypted or re-encrypted with a different key. Crowds
is subject to this attack. Since Onion Routing is based on
mixes, which re-encrypt and re-order a number of packets
before forwarding them, it will not be possible to identify
which packets belong to which stream.

In a passive traceback attack, the attacker is somehow able
to examine the routing state of members participating in
the protocol and trace back the connection via the stored
routing. In Crowds and Onion Routing, this requires an
attacker with enough resources available to corrupt every
host machine on the reverse path from the responder to the
initiator. As each machine is corrupted, the protocol routing
tables are examined to find the previous jondo on the specific
path from the responder. Depending on the implementation,
this information may be available for the full duration of
time between commit periods because routers keep must
keep static paths, and therefore unchanging routing tables
as well. It is possible to open and close TCP connections as
necessary, however, limiting the time available for traceback
to that of the connection and any waiting period required by
TCP to receive late arriving packets. Therefore, tracebacks
of this nature are possible even when data is not flowing
from the initiator to the responder.

In Hordes, the forward and reverse paths are not the same.
An active traceback along the unicast forward path can be
launched by attackers against a hordes session, but only
while the session is active. This is made more difficult by
the fact that packets do not follow the same path through

the network. A passive traceback would not succeed because
Hordes does not maintain per-path routing tables. It is also
possible to perform an active or passive traceback along the
multicast reverse path in Hordes. In this case passive trace-
back (among a group of network routers) may be easier than
among a group of widely distributed hosts, if much or all of
the network is under the same administrative control. In ei-
ther case, however, the identity of the initiator may not be
immediately discernible. The multicast group being traced
may have a number of receivers, hiding the identity of the
initiator.

While it could be expected that such an attack would be
very difficult to perform against a widely-distributed set of
hosts, traceback is still a threat when considering power-
ful opponents. Research into network traceback is ongoing,
and even though the area is in its infancy, some methods
and tools have been developed to facilitate traceback of par-
ticular types of data traffic. This work has been generally
motivated by the need to track network intruders, which
is very similar to tracing back an anonymous connection,
since intruders often try and disguise their location by log-
ging in through a series of compromised hosts, analogous
to anonymous proxies. One method [12] attempts an active
traceback of the stream by comparing its contents at differ-
ent points in the network. Another method implements the
local eavesdropper to determine if a particular stream origi-
nates within a domain, or if it is being forwarded through the
domain [18]. There are also automated methods of active
and passive traceback that examine state within network
routers to follow a stream back through the network [9, 4].
These types of methods could be modified to trace an anony-
mous connection as easily as one originating from a network
intruder.

5.1.2 Collaborators

Any of the three protocols may not be safe against a group
of collaborators, which are malicious participants in the pro-
tocol who communicate with each other to discover the iden-
tity of some initiator. In the extreme case, all but one host
is a malicious collaborator, in which case any packets sent
by the honest participant via Onion Routing, Crowds, or
Hordes are clearly identifiable. Reiter and Rubin have pro-
vided seminal analysis of this issue [11]. They have found
that in Crowds, for a crowd of size n with ¢ malicious col-
laborating crowd members, if n > (pfp_ﬁ(c+ 1), where py
is the probability of forwarding a packet to the destination,
then the initiator has at least minimal anonymity (in our

terminology) with respect to the collaborators. This same
analysis applies to the Hordes forward path, but not the
reverse path.

It should be noted that all three protocols rely on the
assumption that IP addresses are a relatively expensive re-
source, and that an attacker might have difficulty in obtain-
ing enough different IP addresses to assemble a sufficiently
large group of collaborators. In fact, this does not neces-
sarily hold true. A reasonably powerful attacker might have
little difficulty in obtaining an adequate number of IP ad-
dresses, or might even attack the unicast routing in order
to hijack an entire range of addresses. Onion Routing has
an advantage in that the initiator is able to choose its path,
so that if some onion routers are known or suspected to be
collaborators, the path chosen can exclude that group.

In Hordes, because the reply can be heard by any multi-
cast receiver on the Internet, and because the reply comes
without being processed by some other proxy, a timing at-
tack is possible. As each jondo on the forward path is able
to see what the reply multicast address is, a malicious jondo
who is a successor to the initiator on the path can listen to
that multicast address and attempt to correlate the recep-
tion of multicast data and the issuance of forward traffic on
the forward path. If that time period is very small, then
there is a good chance the predecessor is the initiator. This
attack is made more difficult by the fact that any initiator
will only send a fraction of traffic to any particular succes-
sor. A possible defense for this is to use Onion Routing for
the forward path, as only the last jondo on the path would
learn the multicast address being used, with a correspond-
ingly smaller chance that a collaborator would learn it.

5.1.3 Malicious Jondos

Jondos in anonymous routing can easily launch man-in-
the-middle attacks if data is not encrypted on the path from
the initiator and responder. For Onion Routing, which re-
lies on layers of encryption, this should not be a problem. In
Crowds, however, data is typically not encrypted in a man-
ner that prevents intermediate jondos from examining the
contents. This leads to an interesting “attack” in which an
intermediate jondo inserts additional information, such as
advertisements, into replies destined for the initiator. Fur-
thermore, any key exchange protocol used between initiator
and responder must itself be robust against a man-in-the-
middle attack. Catching malicious jondos performing such
attacks is exceptionally difficult as the purpose of the proto-
col is to protect the anonymity of all entities involved. Note
that Hordes jondos cannot launch such an attack because
the forward and reverse paths are not the same.

5.1.4 Local Eavesdropper

A local eavesdropper is an attacker that is able to monitor
all communications sent to or received by one particular pro-
tocol participant. Local eavesdroppers are difficult to defeat
precisely because they can record and compare all incoming
and outgoing messages. If the member sends a message that
was not received, then it is clear that the member is the ini-
tiator of that message. Similarly, incoming messages that
result in no outgoing messages are clearly replies for which
the receiving node was the initiator.

However, in all three protocols the outgoing packet is en-
crypted, so it would not be clear to the local eavesdropper
who the responder is (short of breaking the encryption).

Therefore these protocols retain unlinkability in the pres-
ence of a local eavesdropper as long as the responder cannot
be determined. In Hordes, replies follow what is likely a
different path and come directly from the responder. This
gives the eavesdropper the opportunity to learn the identity
of the responder and remove the unlinkability, since if the
only replies received were from some single source, the re-
sponder would be immediately apparent as that source. To
protect against this scenario, hordes members use shared
multicast groups so that each receives and discard traffic
meant for other members. This provides protection against
a traceback attack, described above, as well as obscuring
with which responder the monitored jondo is communicat-
ing. This method does, however, allow a collaborator to
compile a list of responders (one of which is the actual re-
sponder), by monitoring the multicast group. The degree
of anonymity provided by Hordes for the responder in this
situation is equivalent to the number of active responders
sending on that group. Assuming that each initiator com-
municates with a different responder and all responders are
active and divided equally among all groups, then S for the
responder would be -, rather than n. Notice that these
assumptions may be weak in some cases. If the local eaves-
dropper is monitoring a initiator who is receiving on a mul-
ticast group that is carrying no other initiators’ traffic, the
eavesdropper can determine the initiator. This is a trade-off;
a lower network latency is gained at the expense of degraded
resistance to local eavesdroppers.

5.2 Link Utilization

While a possible concern about Hordes is that the use of
multicast will result in excessive network traffic, we show
through simulation that this does not happen. In fact, in
most cases, using Hordes results in an overall lower link
utilization than Crowds. We consider the overall link uti-
lization to be the sum of all the links that a message and its
reply have to travel on the path from initiator to responder
and back.

As Hordes uses the same forwarding mechanism as Crowds,
the forward path will grow in the same manner — one net-
work diameter per forwarding proxy. The reverse path is dif-
ferent however, as replies go by multicast. Though Hordes
places more than one receiver in each multicast group, the
link utilization does not rise in direct proportion to the num-
ber of multicast receivers because multicast messages only
need be sent once over any link, and are copied at points
where the path to different receivers diverges. The more
receivers in the group, the greater chance of path common-
ality, and the less burden, in terms of link utilization, each
additional receiver requires.

To consider under what conditions Hordes has a lower link
utilization than Crowds, we ran a series of simulations on
topologies generated by GT-ITM, a network topology gener-
ator commonly used in internetwork simulations [1, 16, 17].
The simulation provided a count of the links for direct con-
nections, for Crowds, and for Hordes with varying policies
of multicast receiver distribution.

We generated 50 transit-stub topologies of 5100 nodes
each. The transit-stub model of the network was chosen
as it resembles the Internet. Each model network generated
consisted of a graph of nodes with weighted edges that were
proportional to the distance between nodes; these weights
were used to represent the latency between nodes. We then

used Dijkstra’s algorithm to determine the distance and best
hop information for each node in the network. At the same
time we determined which nodes were leaf nodes. For each
probability of forwarding, which ranged from 0.50 to 0.90
in steps of 0.05, we made 50 trials in each generated graph
for each anonymous group size, ranging from 100 to 1000 in
steps of 100. For each trial we first chose the set of group
members from the set of leaf nodes, then chose a random
initiator and responder from the set of group members.

As shown in Section 4.1, it is possible to vary the number
of receivers in a group while maintaining anonymity ver-
sus collaborators and still requiring less message processing
of participants than Crowds. We therefore examined three
policies: the minimal receiver policy, in which each group
had only as many receivers as necessary to defeat collab-
orators, resulting in minimal anonymity and workload but
requiring the most multicast groups; the mazimal receiver
policy, where the expected workload is the same as the max-
imal workload of Crowds, resulting in the minimum number
of multicast groups but a larger amount of message process-
ing and maximal anonymity; and a midpoint receiver policy,
which used the average of the number of multicast groups
of the minimal receiver and maximal receiver cases.

Our simulation shows that Hordes has lower link utiliza-
tion than Crowds in most circumstances. Figure 2 shows the
link utilization of the direct connection and of Crowds and
Hordes for each of the three policies. In each of the min-
imal receiver and midpoint receiver cases, Hordes always
has a smaller link utilization than Crowds. Figure 2 shows
the link utilization increases above that of Crowds at a py of
about 0.75 for the maximal receiver case of Hordes. What is
interesting about this is that above this point Hordes mem-
bers are actually doing more work than Crowds members.
While the Hordes protocol is designed to do less work, the
determination of what would constitute less work was made
using an upper bound on what the expected amount of work
a Crowds member would do. These cases fall into the area
where Hordes does more work than Crowds, in terms of mes-
sage processing required by members, but still does less work
than the predicted upper limit. It is easy to avoid these cases
by choosing a different policy that results in the use of more
multicast groups, without significant loss of anonymity.

5.3 Network Latency

While both Crowds and Onion Routing [11, 10] provide
initiator anonymity, they do so by increasing the delivery
latency as data is forwarded through a number of proxies
to the responder and then back to the initiator. Hordes,
by using multicast for a direct return path, decreases the
round trip time from initiator to responder significantly as
compared to Crowds. Simulation results that confirm this
expectation are available as an extended technical report [8]
— Figure 3 shows the round trip times in a larger group of
1000 members using the simulation environment from the
previous section and the results reported in the technical
report. The latency problem in Crowds and Onion Routing
stems from the fact that the path from initiator to responder
can cross the network a number of times equal to the number
of hops on the path, and that each hop has the potential of
increasing the total latency by the maximum latency of any
path in the network.

Link Utilization Companson 1000 jondos, MINIMUM group size policy
00

Dlr Pfth

I'OW s"

* * * x *
855 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Probability of Forwarding

Link Utilization Comparlson 1000 jondos, MIDPOINT group size policy
0

Dlr Pfth

I'OW s"

x
¥ . 0. 0.85 0.9 0.95
Probability of Forwarding
Link Utilization Companson 1000 jondos, MAXIMUM group size policy
0

Dlr P(fth

fOW s"

x x o
855 0.6 0.65 07 075 08 0.85 0.9 0.95
Probability of Forwarding

Flgure 2: Link utilization comparison. (top) Min-
imum policy. (middle) Midpoint policy. (bot-
tom)Link utilization comparison. Maximal policy.

6. CONCLUSIONS

The contributions of this paper are threefold. First, we
have introduced Hordes, a new protocol for anonymous com-
munication on the Internet, and shown how it is superior in
performance and in terms of anonymity (with respect to
various attackers) to previous protocols. Our method of ex-
plicitly quantifying the anonymity of a particular protocol
is the second contribution, as previous methods did not pro-
vide a strict measure of the anonymity of a protocol. Third,
for the first time, we have performed a detailed comparison
of existing protocols.

Hordes is the first anonymous protocol to take advantage
of the performance benefits and anonymity inherent to IP
multicast routing. IP multicast can provide a receiver with
anonymity while providing a shorter path through the net-
work, thus reducing the latency incurred by the communi-
cation. We considered the performance of Crowds, Hordes,
and overt communication using a simulation based on an
Internet-type topology. This simulation gave results about
the latency and link utilization of each protocol. Although

Roundtrip Latency Comparison, 1000 jondos
35000 T

"Difggt pathy ——
ol
30000 | 4
25000 |
20000 |
c
1] /
95000 - 4 A
10000 | L
T]
————
5000 _—mmm-aem T I "
. P B
855 0% o065 07 075 o8 08 09 095

Probability of Forwarding

Figure 3: Roundtrip latency for varying forwarding
probabilities with 1000 members [8].

still longer than overt communication, Hordes has a little
more than half the round trip latency as Crowds. Hordes
distributes multicast receivers among a range of multicast
addresses. This limits the number of messages that any
member has to process to ensure a lower workload than a
Crowds member. By varying the size of the range of ad-
dresses used, Hordes can ensure that the overall link utiliza-
tion in the network is less than that of the equivalent Crowd
at all times.

In order to evaluate Hordes in comparison with existing
protocols, we have introduced explicitly quantitative defini-
tions of anonymity and unlinkability. Our anonymity and
security evaluation concluded that Hordes maintains mini-
mal anonymity at all times, other than for attacks for which
either or both of Crowds or Onion Routing also fail. We
also note that no per-session or per-initiator routing infor-
mation is stored in Hordes jondos, which removes the threat
of passive traceback attacks. For some attacks, although
Hordes maintains greater than minimal anonymity, Crowds
and Onion Routing provide higher degrees of anonymity.
This is a trade-off in the use of multicast routing to reduce
the network latency of communication.

An interesting aspect of our analysis was that we found
some advantages of Onion Routing over the other two proto-
cols. These advantages include the fact that the responder’s
identity is known only to the last member on the path, in-
creasing receiver anonymity, and the fact that the initiator
has control over the forward path, which increases security
in the face of suspected collaborators.

7. REFERENCES

[1] GT-ITM: Georgia Tech Internetwork Topology
Models. http://www.cc.gatech.edu/fac/Ellen.Zegura/
graphs.html, 1996.

[2] http://www.freedom.net/info/freedompapers/
index.html, November 1999.

[3] L. P. W. Assistant. Available at
http://www.bell-labs.com/projects/lpwa.

[4] H. Chang and D.Drew. DoSTracker. This was a
publically available PERL script that attempted to
trace a denial-of-service attack through a series of
Cisco routers. It was released into the public domain,
but later withdrawn. Copies are still available on some
websites., June 1997.

[5] D. Chaum. Untraceable Electronic Mail, Return

[7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Addresses, and Digital Pseudonyms. Communications
of the ACM, 24(2):84-88, February 1981.

D. Chaum. Blind Signatures for Untraceable
Payments. In Proc. Crypto’82, pages 199-203, 1982.
D. Chaum. The Dining Cryptographers Problem:
Unconditional Sender and Receipient Untraceability.
Journal of Cryptography, (1):65-75, 1988.

B. Levine and C. Shields. A Protocol for Anonymous
Communication Over the Internet. Technical Report
00-26, University of Massachusetts, Amherst,
Department of Computer Science, May 2000.

G. Mansfield, K. Ohta, Y. Takei, N. Kato, and

Y. Nemoto. Towards Trapping Wily Intruders in the
Large. In Proceedings of the Second Annual Workshop
in Recent Advances in Intrusion Detection(RAID),
West Lafayette, IN, September 1999.

M. Reed, P. Syverson, and D. Goldschlag. Proxies for
anonymous routing. In 12th Annual Computer
Security Applications Conference, pages 95-104.
IEEE, December 1995.

M. K. Reiter and A. D. Rubin. Crowds: Anonymity
for Web Transactions. ACM Transactions on
Information and System Security, 1(1):66-92,
November 1998.

S. Staniford-Chen and L. Heberlein. Holding Intruders
Accountable on the Internet. In Proc. of the 1995
IEEE Symposium on Security and Privacy, pages
39-49, Oakland, CA, May 1995.

P. Syverson and S. Stubblebine. Group Principals and
the Formalization of Anonymity. In J. Wing,

J. Woodcock, and J. Davies, editors, FFM’99—Formal
Methods, Volume I, volume 1708 of Lecture Notes in
Computer Science, pages 814-833. Springer, 1999.

M. Waidner and B. Pfitzmann. The Dining
Cryptographers in the Disco: Unconditional Sender
and Recipient Untraceability with Computationally
Secure Serviceability. In Eurocrypt 89, 1989.

A. web site. Available at

http://www.anonymizer. com.

E. Zegura, K. Calvert, and S. Bhattacharjee. How to
Model an Internetwork. In Proceedings of IEEE
Infocom ’96, San Francisco, CA, 1996.

E. Zegura, K. Calvert, and M. Donahoo. A
Quantitative Comparison of Graph-based Models for
Internet Topology. IEEE/ACM Transactions on
Networking, 5(6):770-783, Dec. 1997.

Y. Zhang and V. Paxson. Stepping Stone Detection.
Presentation at SIGCOMM’99, New Areas of
Research, August 1999.

