
A Unified Framework for Understanding Network
Traffic Using Independent Wavelet Models

Xusheng Tian, Jie Wu and Chuanyi Ji

Abstract—Properties of heterogeneous network traffic have been investi-
gated from different aspects, resulting in different understanding. Specifi-
cally, one recent work discovers that the variance of network traffic exhibits
a linear relationship with respect to the mean. Such a linear relation sug-
gests that the traffic is “Poisson-like”, and thus “smooth”. On the other
hand, prior work has shown that the heterogeneous traffic can be long-
range dependent, and is thus bursty. The focus of this work is to investigate
these seemingly contradictory issues, and to provide a unified understand-
ing on the burstiness of heterogeneous traffic. In particular, we use a sim-
ple statistic, the variance of the traffic, for our investigation. We first study
variance-mean relations at a single time scale. We then investigate the be-
havior of variances at multiple time scales, which determines the temporal
correlation structure. Finally, we provide a unified view to include most
important understanding of the network traffic.

I. INTRODUCTION

Heterogeneous network traffic possesses complex statistical
properties. Those properties have been investigated from differ-
ent aspects, resulting in different understanding [1] [2]. Specifi-
cally, the prior work discovers that the heterogeneous traffic can
be long-range dependent [3] [4] [5] [6] [7]. This implies that het-
erogeneous traffic possesses a strong temporal correlation across
various time scales, and is thus “bursty”. The multi-fractal prop-
erty [8] [9] [10] of the network traffic at small time scales sug-
gests that the traffic has even more variation than self-similarity
(for comparison between self-similar and multi-fractal, please
refer to [11]). On the other hand, a recent work [12] shows that
the network traffic can be “smooth”. This is based on a discov-
ery that the variance of the network traffic is a linear function of
the mean at a single time scale. Such a linear relationship sug-
gests that the traffic is “Poisson-like” and is thus not “bursty”1.
The above mentioned work on properties of Internet traffic has
been mostly focused on the packet (or byte) counts in a fixed
interval of time. Recently, an interesting study of the Internet
traffic has been reported based on other traffic processes: packet
size and inter-arrival time [13] [14]. Based on an empirical study
of 3,026 packet traces collected from 6 monitors and mathemati-
cal theory of superposition of marked point processes, it is found
that the long-range dependence of the inter-arrivals and sizes
goes locally to independence as the active connection load on
an Internet link increases.

Questions then arise as to whether these findings are contra-
dictory, and whether the network traffic is bursty at all. Moti-
vated by the prior work, we investigate these problems in order
to gain a unified understanding of heterogeneous network traf-
fic. Such a understanding is important not only to controlling
and managing current networks but also to designing next gen-
eration networks.

1To be consistent, we use the same concept for “smooth” and “bursty” as
suggested in [12] throughout the paper. In other words, if the variance and mean
has linear relation, the traffic is “smooth”; if the variance and mean has quadratic
relation, the traffic is “bursty”.

In this work, we use a normalized byte counts process in or-
der to study the behavior of the Internet traffic under different
network loads. The normalized byte counts process is defined
as the byte counts in a fixed interval of time (sampling interval)
normalized by the maximum allowable byte counts in this inter-
val. In other words, the normalized byte counts process is the
average link utilization within the sampling interval.

The questions we would like to investigate are:
1. What is the relationship between the variance and the mean
of the network traffic at a single time scale under different link
utilization?
2. What is the relationship between the “smoothness/burstiness”
and the “short-range/long-range” dependence?
3. How to combine the two relationships from the above ques-
tions to provide a unified understanding on the burstiness of the
heterogeneous traffic?

We start obtaining experimental evidence to answer the first
question. One issue of importance is to obtain a complete pic-
ture on the variance-mean relationship over all link utilization.
We notice that a linear variance-mean relation [12] is discovered
using the network measurements obtained at a non-bottleneck
link and under low (about 1%) link utilization. We first extend
the prior work to all link utilization to get a better understanding
of the relationship. Since it is difficult to obtain network mea-
surements under all link load conditions, we perform our studies
using simulated data. The simulated data are traffic traces ob-
tained at a link of a network simulated by network simulator
ns-2 . The network has a simplified server-client topology for
web application. The workload models used to drive the sim-
ulation are similar to those in [15] [16]. Traffic data are then
collected and normalized to obtain link utilization traces. The
(sample) variance-mean relations are calculated using the traces.

Our results show that at a small time scale, when the sampling
interval is equal to the transmission time of a single packet, the
variance-mean has a perfect quadratic relation. At a single time
scale, the variance-mean relation can be approximated as linear
when the link utilization is relatively small or large. However,
for moderate link utilization (around 50%), the non-linearity can
not be ignored. Motivated by these experimental findings, we
derive analytic results to provide insight. We first use a sim-
ple Bernoulli model to establish a quadratic variance-mean re-
lation at a small time scale when the sampling interval is equal
to the transmission time of a single packet. The maximum of
the quadratic function occurs at the utilization 50%. This phe-
nomenon, which we call limited bandwidth effect, can be under-
stood intuitively as follows. Utilization of a link comes from two
related quantities: the traffic load offered, and the bandwidth
available in the network which allows/limits the traffic variation.
A low utilization results in a low traffic load but full variation of
the traffic. This variation, however, is intrinsically small since
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the amount of traffic in the network is small. A high utilization
results in a high traffic load but a small variation which is caused
by the limited remaining bandwidth. A moderate utilization re-
sults from both a high enough traffic load as well as the extra
bandwidth to allow its maximum variation, leading to the largest
variance. We then show that the quadratic relation is indeed a
upper bound of the variance-mean relation at a greater sampling
interval. Our results show that the variance-mean curve is upper
bounded by the quadratic function. To further demonstrate the
limited bandwidth effect at a large time scale, we use a Gaussian
model to analyze the variance-mean relation.

To answer the second question, we establish a theory among
time scales using the independent wavelet model investigated
in [17] [18] [19]. The key advantage of the independent wavelet
model is its ability to provide a simple multiple time scale repre-
sentation of heterogeneous traffic in the wavelet domain. Mak-
ing use of this unique property, we derive a recursive relation
between the variances of wavelet coefficients and that of cumu-
lative traffic in the time domain. We verify this relationship
analytically with DFGN process, and empirically with simu-
lated data, and find that it provides a precise fit to the group
of variance-mean relations.

Our results provide two different views to heterogeneous net-
work traffic: the variance-mean relation within a time scale in
the time domain, and the variance v.s. time scale relation at mul-
tiple time scales in the wavelet domain. We show that each view
provides a unique characterization to the (bursty) heterogeneous
traffic. Specifically, the first view ignores the temporal corre-
lation 2, while the second one explicitly unveil the underlying
temporal correlation. The traffic can have a short-range tempo-
ral correlation as specified through the variance-time scale re-
lation but quadratic variance-mean relation within a given time
scale. Meanwhile, the traffic can also have a long-range tempo-
ral correlation but a linear variance-mean relation within a given
time scale. Therefore, the discoveries in the prior work are in
fact complementary rather than contradictory. In other words, a
unified understanding of heterogeneous traffic can be achieved
by putting both views together. We then provide a unified view
of the traffic by including most of the important traffic charac-
teristics.

The rest of the paper is organized as follows. We first study
the variance-mean relation at a single time scale based on the
traffic traces obtained from the simulations in Section II. We
extend our investigation from one time scale to multiple time
scales to unfold the relations between the notion of bursti-
ness and temporal correlation. We use the independent wavelet
model to bridge the gap between these two concepts in Section
III. In Section IV, we provide a unified view of network traffic.
We conclude the paper in Section V.

II. THE VARIANCE-MEAN RELATION AT A SINGLE TIME

SCALE

In this section, we use both simulation and analytic arguments
to study the variance-mean relation at a single time scale. We
start with the simulation setup in Section II-A. We present the
simulation results in Section II-B. In Section II-C, we explain

2To be more accurate, the first view hide the temporal correlation.

the simulation results analytically.

A. Simulation setup

We use the LBNL network simulator version 2 (ns-2 ) (see
[20] [21] [15] and reference therein) to run our simulations.
In the simulations, we use a typical dumbbell-type topology
(Fig. 1) and four different kinds of workloads (Table I).
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Fig. 1. Complex topology

The dumbbell-type topology is a simplified client-server
topology. It is to simulate the scenario that a set of clients con-
nected to an access network which in turn connects to a set of
web servers. Similar topology has been used in [15] [16]. The
network consists of a web server pool (node 6 — 45), a client
pool (node 46 — 465), seven intermediate routers (or nodes)
(node 0 — 5, node 466) and a number of links. The 40-node
web servers consist of four groups with ten in each group. The
servers in each group are connected to an access node (node
2 — 5) via 10Mbps links. The four access nodes in turn are
connected to the network via 120Mbps links. 420 clients are
connected to the network via 22—32Mbps links to node 1. Link
B is the bottleneck of the network. The bandwidth and delay
for each link are specified in the figure. The RTT3 varies in the
range of 34—150 msec, which is in consistent with the normal
RTT for web applications. The average RTT is 92 msec. We use
TCP Reno and HTTP 1.0 protocol stack in the simulations.

The web workload models we use are almost the same as
those in [15] [16], which are similar to SURGE developed at
Boston University [22]. The only difference is that we vary the
number of web sessions (from 200 to 2400) to achieve different
link utilization (from about 6% to 85%). A web session has a
hierarchical structure. For the details of its structure, please re-
fer to [15] [16]. Four types of workload models are used in the
simulations, namely, Pareto1, Pareto2, Exp1 and Exp2, please
see Table I for details. Since the simulation results for all four
workload models are very similar, we only present the simula-
tion results of Pareto1 in this paper.

B. Simulation results

B.1 Basic statistics

To explore the traffic characteristics for various average link
utilization scenarios, we let the number of web sessions vary

3Possible queuing and processing delays are ignored.
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TABLE I

WORKLOAD MODEL

Workload Pareto1 Pareto2 Exp1 Exp2

inter-page Pareto Pareto Pareto Exp4.
(mean=50, (mean=4, (mean=2.5, (mean=10)
shape=2) shape=1.2) shape=2)

objs./page Pareto Pareto Constant Constant
(mean=4, (mean=3, 1 1

shape=1.2) shape=1.5)
inter-obj. Pareto Pareto - -

(mean=0.5, (mean=0.5,
shape=1.5) shape=1.5)

obj. size Pareto Pareto Exp. Exp.
(mean=12, (mean=12, (mean=12) (mean=12)
shape=1.2) shape=1.2)

from 200 to 2400. Every simulation runs 12 times with differ-
ent random seeds and about 1.5 hours each time. We collect
traffic traces at bottleneck link B with sample interval T = 0.4
msec. We then extract the stable part of the trace. The number of
data points we actually used is 221, which is approximately 839
seconds or 14 minutes long. We then normalize the trace with
respect to the bandwidth of link B to obtain the utilization data
of each sample interval. The utilization trace enables us to com-
pare among traffic traces obtained from different link bandwidth
and/or different network topologies. Moreover, from the practi-
cal standpoint, an ISP (Internet service provider) cares more on
utilization than the actual traffic.

Table II summaries the relationship between the number of
web sessions and the average link utilization. Fig. 2 visualize
the relationship. It is clear that their relation can roughly be
considered as linear.

TABLE II

THE NUMBER OF SESSIONS V.S. LINK UTILIZATION

Sessions Utilization (%) 90% CI
200 6.69 ±1.13
400 13.71 ±3.68
600 21.65 ±2.32
800 29.64 ±6.76
1000 36.01 ±8.92
1200 42.15 ±4.36
1400 51.65 ±11.11
1600 57.22 ±6.30
1800 60.98 ±6.57
2000 70.62 ±11.32
2200 78.94 ±6.63
2400 82.71 ±8.49

B.2 The variance-mean relation

To generate the variance-mean scatter plot, we first divide
each trace into non-overlapping segments of length 512 points.
We then estimate the (sample) mean and variance based on the
512-point segments to generate the scatter plot.
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Fig. 2. The number of sessions v.s. the average link utilization
(90% confidence interval)
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Fig. 3. Variance v.s. mean scatter plot (Ts = 0.4 msec, 200 sessions).

Fig. 3 illustrates the variance-mean relation for 200 web ses-
sions. The average utilization of the trace is 6.69%, which rep-
resents a low utilization case. As we can see from the figure, it
clearly depicts a near linear relation.

In Fig. 4, the variance-mean relation is shown for 1400 web
sessions. This represents a moderate link utilization (51.65%).
Obviously, the curve overlaps with the dashed-line, which is the
perfect quadratic relation as expressed in Equ. (5).

Fig. 5 is the variance-mean relation for 2400 sessions, which
represents a high utilization (82.72%) case. The curve is non-
linear, as well. Notice, however, for relatively high utilization
(roughly 70%), the curve can well be approximated as linear.

From Fig. 3 to Fig. 5, we can have a sense that the variance-
mean relation varies with respect to average utilization. The
sample interval (Ts) for all of the three plots are T (= 0.4msec).
The maximum value of the variances is 0.25. In fact, the three
curves are all part of a quadratic relation described in Equ. 5,
which we explain in detail in Section II-C.1.

B.3 The variance-mean relation at a different time scale

To see how the variance-mean relation varies with respect to
time scale, we present the relations for the same set of sim-
ulations at a different sample interval (Ts = 64T ). We use
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Fig. 4. Variance v.s. mean scatter plot (Ts = 0.4 msec, 1400 sessions).
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Fig. 5. Variance v.s. mean scatter plot (Ts = 0.4 msec, 2400 sessions).

Equ. (1) to generate traffic traces at different sampling intervals
Ts = mT , for m ∈ Z+.

Fig. 6, Fig. 7 and Fig. 8 are the variance-mean scatter plots
for 200, 1400, and 2400 web sessions, respectively. As we can
see, when the link utilization is relatively low (Fig. 6) or high
(Fig. 8), the linear trend still exists. In the case of moderate
link utilization (Fig. 7), a non-linear trend is shown. In all three
cases, the previously observed trends still persist. But the trends
are relatively vague as compared against Fig. 3 to Fig. 5. The
maximum value of the variances is much smaller than 0.25.

C. Analytic explanation of variance-mean relation

In this section, we use two simple models to explain the simu-
lation results analytically. To help with further presentation, we
use the following notation to define traffic traces.

Definition 1: Let X = {Xk}∞k=0 be the link utilization dur-

ing a sample interval T , and X(m) =
{
X(m)

k

}∞

k=0
be rescaled

version of X with sampling interval mT (m ∈ Z+), where

X(m)
k

∆=
1
m

m−1∑
i=0

Xkm+i. (1)
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Fig. 6. Variance v.s. mean scatter plot (Ts = 25.6 msec, 200 sessions).
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Fig. 7. Variance v.s. mean scatter plot (Ts = 25.6 msec, 1400 sessions).
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Fig. 8. Variance v.s. mean scatter plot (Ts = 25.6 msec, 2400 sessions).
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Suppose µX
∆= E [X], σ2

X
∆= Var [X], and R [i] ∆=

E [(Xk − µX) (Xk+i − µX)] are the mean, variance, and auto-

correlation of X, respectively. Suppose µ(m)
X

∆= E
[
X(m)

k

]
and(

σ
(m)
X

)2 ∆= Var
[
X(m)

k

]
are the mean and variance of X(m)

k ,

respectively. Based on the definition, one can easily verify the
following properties.

µ
(m)
X = µX , (2)

(
σ

(m)
X

)2

=
1
m2

m−1∑
i=0

m−1∑
j=0

R [i− j] , (3)

and (
σ

(m)
X

)2

≤ σ2
X . (4)

Intuitively, Equ. (2) tells that when the sampling interval is
mT , the traffic trace X(m) is the link utilization, too. Equ. (3)
depicts that the variance of X(m) is the accumulation of au-
tocorrelation of X. In other words, the variance of X(m)

has included the autocorrelation of X. If X is uncorrelated,
i.e. R [i] = σ2

Xδ [i], Equ. (3) can be further simplified as(
σ

(m)
X

)2

= 1
mσ

2
X , which means that under the above assump-

tion the traffic variation becomes smaller as the sampling inter-
val increases. Equ. (4) gives a loose bound (see Fig. 3 to Fig. 8 to
verify) on the variance of rescaled traffic. Intuitively, it means
that as the sampling interval increases, the variance of the un-
derlying traffic decreases. In general, given more information
about the autocorrelation of the traffic, a tighter bound can be
obtained.

In Section II-C.1, we use a Bernoulli model to character the
transmission of packet at the very small time scale when there
can be either one or none packet transmitted within the sample
interval. In Section II-C.2, we use a Gaussian model to examine
the behavior of traffic at a large time scale when the central limit
theorem becomes valid.

C.1 Bernoulli model

The motivation on using Bernoulli model is to capture the
variance-mean relation within the smallest time scale5.

Assume packets transmitted over a link have a fixed size, and
the sample interval is exactly equal to the transmission time of
a packet. Therefore, there is either one or none packet trans-
mitted in any sample interval. The link utilization of a sample
interval can be modeled by a random variable X = {1, 0} with
Bernoulli distribution, where Pr {X = 1} = p is the probabil-
ity that there is a packet transmitted and Pr {X = 0} = 1− p is
the probability there is no packet transmitted. We have the mean
µX = p, and the variance σ2

X = p(1 − p). Therefore,

σ2
X = µX − µ2

X . (5)

Equ. (5) clearly explains why the variance-mean relation is
quadratic instead of linear at small time scales. Another im-
portant finding from Equ. (5) is that when µX = 0.5, we have

5As will soon be discussed, temporal correlation only has no effect within a
time scale.

σ2
X = 0.25 at its peak; when µX < 0.5, the variance increases

with the mean; and, when µX > 0.5, the variance decreases
with the mean. Intuitively, it suggests that the maximum bursti-
ness is allowed when link utilization is at 50%. The above rela-
tion is plotted as dashed-line in Fig. 4. The dashed-line overlaps
with the actual variance-mean scatter plot (dots) since in this
case the sample interval is exactly equal to the time a packet is
transmitted across the link 6.

In fact, based on the upper bound provided in Equ. (4), the
quadratic relation shown in Equ. (5) is an upper bound to sam-
pling interval mT . It is clearly true from our simulation experi-
ments as shown from Fig. 3 to Fig. 8.

If independent arrival of packets is further assumed, X(m)

will have binomial distribution, with Pr
{
X(m) = k

m

}
=(

m
k

)
pk (1 − p)m−k, and

(
σ

(m)
X

)2

= 1
mµ

(m)
X

(
1 − µ

(m)
X

)
.

Clearly, the independence assumption is far from realistic, that
is why maximum value of variances is greater than the upper
bound (0.25/64 ≈ 3.9e − 3) predicted by the independent ar-
rival as the sampling interval increases (shown in Fig. 6 to 8).

C.2 Gaussian model

Gaussian distribution is a feasible model for aggregated traffic
obtained at a sufficiently large time scale, and thus used here
to analyze the effect of limited link capacity on variance-mean
relations.

Intuitively, finite link capacity limits traffic variation espe-
cially at the high utilization. Quantitatively, to illustrate that a
limited link bandwidth itself can contribute to the change of the
variance-mean relation, we use the following Gaussian model.

Suppose that the number of arrivals X (packet counts or byte
counts) at a fixed time interval is Gaussian distributed with mean
µ > 0 and variance σ2. Suppose

Y =
{

X/Pr {X > 0} if X > 0,
0 otherwise, (6)

is the positive part of X. Y is then fed into a bufferless server
with maximum service capacity of C > µ per time interval.
We want to study the relationship of variance and mean on the
output (Z) side of the server.

Z =
{

Y if Y < C,
C otherwise. (7)

The analytic forms of the mean (µZ) and variance (σ2
Z) have

been derived, but are rather complex. We visualize their rela-
tionship in Fig. 9. The curves are normalized with respect to
link capacity (C). α = µ/C is the normalized input load. As
we can see from the figure, the variance-mean depicts non-linear
relation for all three different input loads. Another observation
is that at small and large utilization, the non-linear relation can
be approximated as linear.

D. Summary

To summarize, as a result of limited bandwidth, the variance-
mean has a non-linear relation in general. The non-linear rela-
tion is upper bounded by a quadratic relation shown in Equ. (5).

6Please be aware that ns-2 generates data packets with fixed size, namely 1000
bytes.
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For small or large link utilization, the non-linear relation can be
approximated as linear. But, for moderate link utilization, the
non-linearity can not be ignored. The variance-mean relation
is non-linear at small time scales, while the relation becomes
vague at large time scales. This implies that at a single fixed
time scale (sampling interval) the traffic can be consider as ei-
ther bursty or smooth depending on the range of link utilization
and the sample interval rather than the temporal correlation. The
linear relation discovered in previous work is an approximation
of the non-linear relation for relatively small utilization.

III. VARIANCES AT MULTIPLE TIME SCALES

In the previous section, we have shown through both sim-
ulation and analytic arguments that at small time scales the
variance-mean has non-linear relation and at large time scales
the non-linear relation is vague. However, the variances infor-
mation at one time scale is not enough to capture one of the
key characteristics of the traffic, namely, the temporal correla-
tion. One way to consider the temporal correlation of the traffic
is to study the variances of the traffic at multiple time scales.
In this section, we study the variances of the traffic at multiple
time scales in both time and wavelet domain. It has been shown
[23] that the variance-time relation is equivalent to the relation
of variances of wavelet coefficients v.s. time scale. We use the
independent wavelet model to investigate the relationship of dif-
ferent variances.

A. Wavelets and the independent wavelet models

We begin by introducing wavelets and the independent
wavelet models [24]. The network traffic has complex temporal
correlation structure: both short-range and long-range properties
exist. But the complex correlation structure in the time domain
is found to be simple in the wavelet domain. In fact, a simple
independent model of the wavelet coefficients can provide suf-
ficiently good performance. As a result, the synthesized traffic
from the independent wavelet model has the same temporal cor-
relation asymptotically, and generates queuing results close to
original traffic.

Let x(t) be a random process generated from an independent
wavelet model for discrete time t (t ≥ 0). That is, through the

inverse wavelet transform, we have

x(t) =
∞∑

j=1

∞∑
m=0

dj [m]ψj,m (t) + ψ0, (8)

where ψj,m (t) and dj [m] are the wavelet basis functions7 (see
[18] [25] for details) and the corresponding wavelet coefficients,
respectively, at the time scale j (j ≥ 1, and an integer) and
shift m (m ≥ 0, and an integer). The wavelet basis functions
are obtained by dilating and translating a wavelet function ψ(t),
where ψj,m (t) = 2−j/2 · ψ(2−j · t −m), and in particular for

Haar wavelet, ψ(t) =




1 if 0 ≤ t < 1/2,
−1 if 1/2 ≤ t < 1,
0 otherwise.

For the shape

of the Haar wavelet, please refer to Fig. 10.
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The wavelet coefficients, dj [m]’s, can be obtained through
the wavelet transform

dj [m] =
+∞∑
t=0

x(t)ψj,m (t) . (9)

7ψ0 represents the mean of x(t), for the Haar wavelet. In general, ψ0 is the
projection of x(t) to the coarsest time scale.
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The independent wavelet models are defined as below.
Definition 2: In the independent wavelet models (IWMs), the

wavelet coefficients dj [k]’s are assumed to be independent ran-
dom variables. For a given j (j ≥ 1), dj [k]’s are independent
and identically distributed (i.i.d.) random variables with a zero
mean and a variance σ2

j . That is,

E [dj1 [k1] dj2 [k2]] =
{
σ2

j k1 = k2 and j1 = j2 = j,
0 otherwise.

(10)
To illustrate how the variances of the wavelet coefficients σ2

j

characterize the temporal correlation of the traffic, Fig. 11 de-
picts log2 σ

2
j v.s. j for three typical types of traffic: AR(1)

represents short-range dependent traffic; FARIMA(0,0.4,0) rep-
resents pure long-range dependent traffic; while FARIMA(1,
0.4,0) represents traffic with both short and long range depen-
dency.

B. The relationship among variances in time and wavelet do-
main

The relationship among variances in both time and wavelet
domain is summarized as follows.

Theorem 3: Suppose
(
σ

(m)
X

)2

= Var
[
X(m)

]
is the vari-

ance of rescaled random process X(m) as defined in Equ. (1),

and
(
σ

(m)
j

)2

is the variance of Haar wavelet coefficient at time

scale j when the sampling interval is mT . The following rela-
tion holds true

(
σ

(1)
k

)2

= 2k ·
((

σ
(2k−1)
X

)2

−
(
σ
(2k)
X

)2
)
. (11)

Proof of the theorem is omitted due to page limit. The signif-
icance of the Theorem is that based on the independent (Haar)
wavelet model, Equ. (11) provides a unified view of variances
both in time and wavelet domain for different sampling inter-
vals. It is noteworthy to mention that Equ. (11) is to be under-
stood as that the difference of the (sample) variances in time
domain is determined by the variances of wavelet coefficients,
not the other way around. The variances of wavelet coefficients
are determined by the nature of traffic itself. One can, of course,
calculate the variances of the wavelet coefficients based on the
(sample) variances in the time domain.

From the non-negativity property of Equ. (11), one imme-
diate conclusion is that as the sampling interval increases, the
variance of the measured traffic decreases. Using this property
and σ2

j , one can provide a tighter upper bound for variances in
time domain.

Substitute Equ. (3) into Equ. (11), we have

(
σ

(1)
k

)2

=
1
m

(
m−1∑
i=0

(2m− 3i)R [i] −
2m−1∑
i=m

(2m− i)R [i]

)

−R [0] ,

where m = 2k−1. It is clear that the variances of the wavelet
coefficient have included the autocorrelation of X.

A simple example to verify Equ. (11) is as following. If X
is from discrete Fractional Gaussian Noise (DFGN), it is known

that [26] (
σ

(m)
X

)2

= σ2
Xm

2H−2, (12)

and (
σ

(1)
j

)2

= σ2
X 2j(2H−1)

(
22−2H − 1

)
, (13)

where H (0.5 ≤ H < 1) is the Hurst parameter. Through some
algebraic manipulation, it is not difficult to verify that Equ. (11)
holds for the case of DFGN.

To show how accurate Equ. (11) is when used to estimate
variances of the wavelet coefficients, we compared the estimate
against the definition of variances of wavelet coefficients using
all the simulation traces. The relative error of Equ. (11) is less
than 2.5% for all traces.

In Fig. 13, we plot the variance-mean relation for different
sampling intervals with 95% confidence interval. As we can
see from the figure, when the sampling interval is fixed, the
variance-mean exhibits quadratic relation at small time scales.
When we look across different sampling intervals, it is obvious
that as we increase the sampling interval, the variances decrease.
For all the curves, the upper bound provided in Equ. (4)(5) is al-
ways true.
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Fig. 12. The variance-mean relation at different time scales (Ts = 0.4 msec,
0.8 msec, 1.6 msec, and 3.2 msec from top down).

Fig. 13 depicts the variances of wavelet coefficients v.s. time
scale at different sampling intervals, which demonstrates the
correctness of Equ. (11). It is the counterpart of Fig. 12 in
wavelet domain. More interestingly, it is clear from Fig. 13 that
j = 9 separates the plot into two parts: to the left, log2 σ

2
j varies

a lot; to the right, the curves depict constant slope (i.e. the Hurst
parameter). In terms of time, j = 9 is equivalent to 102.4 msec
(= 29−1T ). If we recall that the average RTT is 92 msec for our
traces, j = 9 is actually the closest time scale to average RTT.
The demarcation by average RTT is consistence with findings of
the multifractal feature of network traffic.

IV. A UNIFIED VIEW

In previous two sections, we discussed variances at a single
time scale and relationship of variances at multiple time scales in
both time and wavelet domain. In this section, we put different
views of the traffic together in a unified framework.
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Fig. 13. The variances of wavelet coefficients v.s. time scales: average RTT=92
msec (Ts = 0.4 msec, 1.6 msec, 6.4 msec, 25.6 msec, and 102.4 msec from
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Fig. 14. The variances of wavelet coefficients v.s. time scales: average RTT=92
msec, Ts = 0.4 msec.
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Fig. 16. The unified view of network traffic.

The unified view of network traffic is shown in Fig. 16. Tra-
ditional voice traffic characterized by Poisson models belongs to
the lower-right corner of the framework. As the network carries
more and more data traffic, it is insufficient to study traffic at
a single time scale. Therefore, the Poisson model fails and the
self-similar property of traffic becomes a common sense in mul-
tiple time scales perspective. This covers the upper-right part of
the figure.

As we gets down to finer time scales, the variation of traffic
has become even more severe than self-similar. This brings us to
the upper-left corner of the figure, where multi-fractal and non-
Gaussian are among the key characteristics of the traffic. In this
paper, we fill the lower-left corner of the figure by unfolding the
quadratic variance-mean relation of the traffic at a single small
time scale.

We use the RTT to demarcate the left and right part of the
figure. It is obvious from Fig. 13 that average RTT clearly sep-
arates the large time scales and small time scales. A. Feldmann,
et al. [9] use port-to-port flows to separate the two different
time scales. They suggest to use RTT in future work as well. It
is noted that the average RTT may not be the only criteria to sep-
arate small and large time scales behavior of the traffic since the
topology used to the conclusion is simple compared with real
networks. Further investigation based on actual network mea-
surement is needed to verify the result. The critical time scale
may be a good candidate to be the criteria to separate small and
large time scales as well. By any means, we call the time scale
which demarcates the small and large times as the “best” time
scale.

This work and [12] [13] [14] brought us back to where we
started, the lower-right corner. However, this should not be un-
derstood as we go back to where we were and disregard the mul-
tiple time scales nature of the traffic. At the “best” time, use
the traditional Poisson approach. For example, bufferless mul-
tiplexing of streaming flows has made the loss rate not depend
on temporal correlation [27], which provide a chance to use tra-
ditional Poisson approach at flow level. In this paper, we bridge
the single and multiple time scale(s) view with the independent
wavelet models.

V. CONCLUSION

We have investigated in this work on how to provide a uni-
fied understanding of heterogeneous traffic. We have shown that
the concept of “smooth” and “bursty” is about traffic at a single

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 453 IEEE INFOCOM 2002



time scale, while the long-range dependence is the characteristic
of traffic at multiple time scales. In particular, we have shown
through both simulation studies and analytic developments that
the traffic at a small time scale has quadratic variance-mean rela-
tion, and therefore is “bursty”. Nevertheless, the linear approx-
imation of variance-mean relation is valid for low or high link
utilization, or large time scales, where the traffic can be treated
as if it were “smooth” within a given time scale.

We then obtain a relationship of the variances at multiple
time scales using the independent wavelet model. The wavelet
model essentially provides a framework to combine two dif-
ferent views: one is for variance-mean within a given time
scale, and the other is for variance-time scale relation at mul-
tiple time scales. As a result, the two seemly different discover-
ies/concepts are actually complementary to each other: the con-
cept of “smoothness/burstiness” at a single time scale does not
take the temporal correlation of the traffic into consideration,
whereas the concept of “short-range/long-range dependence”
captures the temporal correlation through variances across all
time scales.

A unified view of heterogeneous traffic is then a provided.
At large time scales, traffic is self-similar, Gaussian and has
Poisson-like variance-mean relation. While at small time scales,
traffic has more variations with multi-fractal, non-Gaussian, and
quadratic variance-mean relation. The average RTT is the key
to demarcate small and large time scales. The network traffic
itself has multiple time scales properties: self-similar or multi-
fractal. It does not necessarily mean the end of the traditional
traffic engineering.

As the importance of average RTT needs further confirmation
by actual network measurement, we are actively working on the
issue. Research efforts are expected to apply the current under-
standing to help network design and operation.
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