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ABSTRACT
We describe a new method for protecting the anonymity of
message receivers in an untrusted network. Surprisingly, ex-
isting methods fail to provide the required level of anonymity
for receivers (although those methods do protect sender
anonymity). Our method relies on the use of multicast,
along with a novel cryptographic primitive that we call an
Incomparable Public Key cryptosystem, which allows a re-
ceiver to efficiently create many anonymous “identities” for
itself without divulging that these separate “identities” ac-
tually refer to the same receiver, and without increasing the
receiver’s workload as the number of identities increases. We
describe the details of our method, along with a prototype
implementation.

Categories and Subject Descriptors
E.3 [Data]: [Data Encryption]

General Terms
Security

Keywords
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1. INTRODUCTION
Anonymity is a desirable property in many communica-

tion systems. Although several good methods exist to pro-
tect the anonymity of message senders, there appears to be
no existing method that fully protects receiver anonymity.
We address this problem by presenting a system that pro-
tects receiver anonymity for a wide range of message-passing
applications.

Prior research has focused on how receiver anonymity can
be compromised because of the contents of a message or
because of how a message is routed. However, receiver
anonymity can also be compromised by the actual contents
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of the public key used to encrypt messages. If several senders
share the same public key to encrypt messages to be sent for
an anonymous receiver, then they can infer that they are in-
deed sending to the same receiver. They can then aggregate
the information they each have on that receiver to further
compromise his anonymity. To achieve receiver anonymity
a receiver must be able to create several truly anonymous
identities that will allow for a sender to both encrypt and
route messages to him. These identities must be incom-
parable in the sense that the two cannot be identified as
belonging to the same individual.

1.1 Requirements
Our goal is to provide a way for senders to transmit mes-

sages to receivers, but without anyone — including the
senders — being able to determine which message is destined
for which receiver, or even being able to determine whether
any two messages are destined for the same receiver. We
want to keep this information secret not only from outsiders,
but also from message senders, since the sender is often the
very person from whom the receiver most wants to conceal
his identity.

We assume that adversaries can see both the contents of
messages and where those messages are routed.

We define three requirements that must be met for re-
ceiver anonymity to be realized. The first requirement is
that if any conspiracy of senders and eavesdroppers is asked
to determine the receiver of a particular message, they can
do no better than random guessing.

In practice, we cannot prevent receivers from replying to
messages, or from divulging information about their iden-
tities in these replies. Whenever a receiver replies to a
message, some small amount of information about that re-
ceiver’s identity will probably leak. (For example, Rao and
Rohatgi [16] describe how a surprisingly large amount of
information about authorship can be extracted from text
documents.) If the receiver is providing some service to the
sender or vice versa, some leakage of this type may be a
necessary consequence of that service. Since we cannot pre-
vent this type of leakage, our goal is to make sure that the
adversary cannot get any useful information other than this.

This type of information leakage motivates the second re-
quirement of anonymity: each receiver must be able to cre-
ate a large number of anonymous identities, such that any
message sent to any of these identities will go to that re-
ceiver, but nobody else will be able to tell that those anony-
mous identities correspond to the same receiver. This re-
quirement is important in an environment where senders can
learn a little information about each receiver; by preventing
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the senders from learning that they are talking to the same
receiver, we prevent them from aggregating the information
they have about that receiver.

This second requirement implies that anonymous identi-
ties must be incomparable, so that an adversary who sees
two or more identities cannot tell whether they correspond
to the same receiver. Practicality also requires that many
messages can be sent to the same anonymous identity with-
out compromising the receiver’s anonymity.

The third requirement is that the solution be reasonably
efficient. Some of the obvious approaches to the problem
fail for efficiency reasons. For example, schemes that use a
separate private key for each potential sender are too ineffi-
cient, as they require the receiver to try each of the possible
private keys when a message arrives1.

As described in Section 2, none of the existing systems for
receiver anonymity can fully meet these criteria.

1.2 Our Solution
Our solution meets all of the requirements mentioned

above. We prove its cryptographic properties, under the
standard assumption that the Decisional Diffie-Hellman prob-
lem is hard. We also describe an implementation.

In our solution, each message is sent to a multicast group.
All members of the multicast group try to decrypt the mes-
sage, but only one of them will succeed. The other members
of the group, having failed to decrypt the message, simply ig-
nore it. The adversary can, of course, tell that the intended
receiver is one of the members of the multicast group, so
this provides anonymity only within the multicast group.
However, if the multicast group is large enough this will be
acceptable in practice. (This aspect of our solution is not
novel, and the remainder of our solution can be used with
routing methods other than multicast.)

The cryptographic component of our solution involves the
use of a new class of asymmetric key cryptosystem, which
we call an Incomparable Public Key cryptosystem. In an
Incomparable Public Key scheme there exist many unique
public keys that can each be used to encrypt data in such
a way that a single secret key can be used for decryption.
We call two public keys “equivalent” if they correspond to
the same secret key and “non-equivalent” if they do not.
The crucial property of such a cryptosystem is that an ad-
versary, given two public keys, cannot tell whether they are
equivalent.

Using an Incomparable Public Key scheme a receiver can
construct an anonymous identity as the pair of a multicast
address and an Incomparable Public Key. To construct an-
other anonymous identity the receiver just uses the same
multicast address with an equivalent, but unique public key.
The identity is truly anonymous since colluding senders can-
not distinguish two equivalent public keys from two non-
equivalent public keys. A sender can repeatedly encrypt
and send messages to the multicast address without requir-
ing any response from the receiver. The receiver can identify
and read messages efficiently as it only needs to perform one
decryption for each message sent to the multicast address.

1Of course, one could try putting a marker on each mes-
sage to identify which private key to use for decrypting that
message, but these markers would leak identity information
in violation of the anonymity requirements. The details of
these and other design alternatives are discussed at greater
length in Section 4.1.

Our solution allows a receiver to create and use as many
or as few anonymous identities as desired. For maximum
anonymity, a receiver might want to give a separate anony-
mous identity to each sender. Indeed, a receiver might
want to give multiple anonymous identities to the same
sender, if the receiver is carrying on multiple independent
conversations with that sender. Alternatively, a receiver
may choose to give the same anonymous identities to a set
of senders, to enable that identity to develop a reputation
among those senders, while using separate anonymous iden-
tities with other senders. We expect that different receivers
will have different policies for managing anonymous identi-
ties, and our solution does not constrain this policy choice.

1.3 Practical Motivation
Before we describe the details of Incomparable Public

Keys we briefly discuss situations that motivate the use of
Incomparable Public Keys in practice. We believe that there
are two general classes of situations for which Incomparable
Public Keys are useful. The first is when the receiver wishes
to communicate with another distinct party from whom he
wishes to remain anonymous, either because he does not
want that party to know his identity, or because he does not
trust that party to keep his identity secret. The second situ-
ation occurs when the receiver wishes to communicate with
a device that he either controls or trusts, but the receiver is
concerned with maintaining his anonymity in the event that
the device becomes compromised.

The first situation is the one most commonly explored
in anonymous communication systems. Examples include
anonymous web-browsing and e-mail. The anonymous iden-
tity of the receiver, which includes an Incomparable Public
Key, can be delivered anonymously (see related work in Sec-
tion 2) to any sender that is willing to communicate with an
anonymous receiver. The important aspect of this situation
is that the receiver does not trust the other party to begin
with, but both the parties still observe a mutual benefit in
communicating anonymously.

In the second situation the receiver might trust or even
control a set of devices (or the parties behind them), but
wishes to forward protect his anonymity from what he per-
ceives as a significant risk of device compromise. There are
a number of ways in which an adversary can compromise a
device including hacking into a networked device and physi-
cally capturing one. For example, if a receiver were to form
a sensor network by deploying a set of devices he might
be most concerned about an adversary physically captur-
ing and then tampering with a device. Another example
is when the receiver initially controls a set of machines that
communicate with him over the Internet. In this case the re-
ceiver might be concerned about both physical and hacking
attacks.

While we find this broad classification helpful, not ev-
ery scenario distinctly falls into one category. Additionally,
while Incomparable Public Keys are useful for protecting
the anonymity of the receiver, they do not prevent other
types of attacks such as a device feeding the receiver false
information.

In both classes of situations we found that Incomparable
Public Keys can be used in a variety of ways for commu-
nicating with an anonymous receiver. Incomparable Public
Keys can be used for secure message delivery, to establish
an anonymous secure connection in a key exchange proto-
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col, and in peer-to-peer systems. We describe several ways
to apply Incomparable Public Keys later in the paper.

1.4 Structure of this Paper
Section 2 discusses related work, and explains why previ-

ously proposed systems fail to provide the desired anonymity
properties. Section 3 describes the theory behind Incompa-
rable Public Keys including a definition and an ElGamal-
based implementation. We follow in Section 4 by exploring
the practical applications of Incomparable Public Keys. We
begin by comparing Incomparable Public Keys to several
other methods that might hope to achieve anonymity. We
analyze the efficiency of using Incomparable Public Keys in
a multicast environment and show how they can be adapted
for use a key exchange protocol. Next, we describe our pro-
totype implementation of Incomparable Public Keys in the
popular GnuPG software package. Finally, we conclude in
Section 5.

2. RELATED WORK
Several existing proposals address parts of the receiver

anonymity problem, but all have flaws or limitations that
prevent them from providing a complete solution.

Pfitzmann and Waidner [14] point out that, to prevent
message routing from compromising receiver anonymity, each
message should be routed not to a single receiver, but to a
multicast address, so the true receiver will retain anonymity
among the group of all receivers listening on that address.
They further propose marking each message in some way so
that the intended receiver can distinguish that message from
all other messages sent on the multicast address. Pfitzmann
and Waidner refer to this mark as an implicit address if only
the intended receiver can distinguish the message as being
addressed to him. A mark is called an invisible implicit ad-
dress if the marks of two messages from the same sender
to the same receiver cannot be tested for equality. The re-
sult of invisible implicitly marked messages on a multicast
address is that no observer should be able to tell the true
receiver of a message or be able to link a pair of messages by
looking at the mark. Pfitzmann and Waidner observe that
a public key cryptosystem can be used to realize invisible
implicit addresses, where each possible receiver decrypts an
address with their private key and uses message redundancy
to determine if the message was destined for him. However,
although their proposal provides receiver anonymity against
an eavesdropper, they do not explore the possibility of with-
holding information about the receivers’ identities from the
senders.

Chaum [4] and Goldschlag, Reed and Syverson [9, 20] in-
troduced anonymous reply addresses and reply onions. In
Chaum’s system an initiator may use a chain of nodes to
send a message anonymously. The initiator may include
an anonymous reply address for the responder to send back
a response. The anonymous reply address is a set of lay-
ered routing and encryption instructions for sending back
a response. Even the responder will not know where he is
sending the message by using the address, thus it is anony-
mous. Chaum’s reply addresses (and those of Goldshlag
et al.) have the drawback that they can only be used once.
This means that if a responder has more information to send,
but has used up all of the reply addresses, he is unable to
send any more messages. (This problem does not occur with
sender anonymity since a sender can always generate new

layered routing instructions to protect his identity.) Addi-
tionally, these systems do not specify how the initiator will
identify and decrypt messages if the initiator has a large
number of anonymous reply addresses outstanding.

Pseudonym servers, such as the one described by Mazières
and Kaashoek [12], supply only pseudo-anonymous addresses.
Multiple senders can collude and discover whether they are
sending to the same receiver by comparing pseudonym ad-
dresses. A receiver might try to get around this by creating
and using a unique pseudonym, with a unique public key,
for each potential sender. However, that approach would
degrade the receiver’s efficiency as the receiver would need
to have a large number of secret keys, and would have to try
decrypting each message with each of its secret keys2.

Bellare et al. formalize a cryptographic security prop-
erty they name Key-Privacy [1]. Suppose an adversary was
given two public encryption keys (pk0, pk1) and ciphertext
c that was encrypted with one of those two public keys. A
cryptosystem maintains Key-Privacy if an adversary cannot
determine (with better success than random guessing would
provide) which key was used for encryption. We observe that
if an asymmetric cryptosystem is used to mark addresses and
the Key-Privacy requirement is met, then the addresses will
be invisible. Key-Privacy addresses part of the anonymity
requirement, by preventing encrypted messages from leaking
information about the keys used to encrypt them. However,
maintaining Key-Privacy does not necessarily prevent infor-
mation from leaking to the senders via the keys themselves.

Shields and Levine discuss the use of IP Multicast for
receiving anonymous traffic [19]. In their scheme a group of
receivers make an anonymous group by all listening to the
same IP multicast address. However, they do not discuss
the problem of discerning which key to use upon reception
of an encrypted message.

Golle et al. independently worked on an idea similar to
to Incomparable Public Keys, which they call Universal Re-
encryption [10]. Universal Re-encryption allows mix-nets to
re-encrypt ciphertext without knowing the public key used
to encrypt the ciphertext. Using Universal Re-encryption
allows the cumbersome key-distribution to be skipped in set-
ting up a mix-net. In their scheme the ciphertext is equiva-
lent to an ElGamal encrypted message with an Incompara-
ble Public Key attached to it. A ciphertext is re-encrypted
by re-encrypting the first part with the attached Incompa-
rable Public Key and then transforming the Incomparable
Public Key so that it is equivalent to, but computationally
indistinguishable from its previous form. Although some of
our techniques are similar to those of Golle et al., we fo-
cus on how anonymity is affected by the contents of public
keys whereas they augment ciphertexts for re-encryption in
mix-nets.

Several systems [19, 9, 20, 5, 17, 4, 7] are useful for pro-
viding sender anonymity. These systems could be used in a
complementary fashion with Incomparable Public Keys. A
sender could use the Incomparable Public Key to encrypt
the message and then use one of these systems to deliver
the encrypted message to a multicast address.

2The sender could attach a tag to each message to specify
which key should be used to decrypt that message, but then
these tags would leak information to an eavesdropper.
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3. INCOMPARABLE PUBLIC KEYS
We have discussed how the encryption scheme is an essen-

tial element in protecting receiver anonymity. To achieve re-
ceiver anonymity we must use an asymmetric key cryptosys-
tem that has the same or similar efficiency as other asym-
metric cryptosystems and does not allow multiple senders to
be able to determine if they are encrypting messages for the
same receiver. In this section we outline the requirements
for an Incomparable Public Key scheme.

3.1 Incomparable Public Key Requirements
We specify three requirements that an Incomparable Pub-

lic Key scheme should have. (Formal definitions appear in
Appendix A.)

3.1.1 Generation of Incomparable Public Keys
The holder of a secret key must be able to generate a large

number of public encryption keys such that any message
encrypted with any of these public keys can be decrypted
by one secret key. We call two public keys equivalent if they
can be used to encrypt messages for the same secret key.
Public keys must have the property that they cannot be
tested for equivalence without access to the corresponding
secret key(s). A holder of the secret key must be able to
generate a practically inexhaustible number of these keys.

When attempting to determine if two keys are equiva-
lent the adversary may try several different attacks including
combining the keys and observing the receiver’s response to
messages. Such a threat model is valid when Incomparable
Public Keys are used in applications such as Key-Exchange
protocols (see Section 4.2) where the anonymous receiver
will respond to messages. To account for these types of at-
tacks we give the adversary access to a decryption oracle
in our formal model (Appendix A). This definition con-
stitutes a very strong model of security for Incomparable
Public Keys.

For simplicity, we create schemes that are semantically se-
cure, but we claim that it is possible to add security against
adaptive chosen ciphertext attacks [15] to our schemes.

3.1.2 Key-Privacy
There must be no way of determining if two encrypted

messages were encrypted with the same key. We extend
Bellare et al.’s [1] definition of Key-Privacy to account for
the possibility that two public keys are equivalent. We for-
mally define the Key-Privacy property in Appendix A.2. If
the Key-Privacy property holds then a network eavesdrop-
per will be unable to identify two encrypted messages as
having been encrypted with the same key.

3.1.3 Efficiency
The efficiency of an Incomparable Public Key scheme must

be similar to other asymmetric key schemes. Any scheme in
which the work performed to decrypt a message grows with
the number of equivalent public keys that might have pos-
sibly been used to encrypt the message is not acceptable.

3.2 ElGamal Implementation
We make novel use of the ElGamal cryptosystem to real-

ize an Incomparable Public Key scheme. To create a new
Incomparable Public Key a receiver chooses a random gen-
erator g and creates the key as (g, ga) where a is the private
key of the receiver. To construct another Incomparable Pub-

lic Key the receiver chooses another generator h at random
and creates the key (h, ha). These keys are equivalent in
function, but a pair of them is indistinguishable from a non-
equivalent pair under the Decisional Diffie-Hellman (DDH)
assumption. Our scheme’s security relies on the number
theoretic DDH assumption in the Random Oracle model.
We detail our scheme in the rest of this section and offer a
formal proof of correctness in Appendix B.

3.2.1 Structure of Keys
All receivers share a prime p where q = p−1

2 is also a
prime. A newly created public key is an ElGamal public
key (g, ga) where g is a randomly chosen quadratic residue
in Z∗

p . The receiver stores the key (g, ga) in a hash table
to record it as being valid. (The records of distributed keys
will be used when decrypting a message.) Alternatively, the
receiver could keep a private MAC key to itself and give a
MAC of the key to the sender that would validate the key.
This would alleviate the receiver from the task of recording
every key it creates.

3.2.2 Encryption
Suppose a sender holds an Incomparable Public Key (g, ga).

(The key he holds is one of possibly several Incomparable
Public Keys corresponding to the private key a.) To en-
crypt a message the sender will first randomly choose a key
K for a symmetric cipher. He will then encrypt the message
as (gr, garK),H(r), EK(r, (g, ga), message). H is a secure
random hash function, r is the random exponent used in the
ElGamal part of the encryption, and EK denotes a random
encryption with a symmetric cipher. (The cipher must be
semantically secure and should use part of K to authenticate
the encryption [2].) This encryption method uses ElGamal
with a cryptographic envelope. (K will need to be mapped
from the quadratic residues of Z∗

p to a symmetric cipher
key.)

3.2.3 Decryption
Suppose a message is received of the form ((d, e), h, M).

Decryption will proceed as follows.

1. Let K = e
da . Use K to decrypt the envelope M . This

decryption gives us r, (g, ga), message.

2. Check that h = H(r) and that the public key is recorded
as a valid one.

3. Check that gr = d where (g, ga) is the key in the en-
velope.

4. If any of these checks fail disregard the message, oth-
erwise the decryption is message.

In the encryption process the encryptor uses the hash
function to prove knowledge of encryption factors for the
public key he was given. Since all valid public keys are
recorded, two encryptors cannot combine two public keys to
form a valid hybrid key to encrypt with. We note that this
attack would be possible in a simpler scheme that did not
record valid public keys.

3.2.4 Key-Privacy
Encryption and decryption proceed in exactly the same

way as in standard ElGamal with the addition of a crypto-
graphic envelope and a hash function. Since the symmetric
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encryption key used each time is fresh and the encryption
is randomized it will not compromise Key-Privacy. Bellare
et al. demonstrate that encryption in ElGamal meets this
criterion [1].

3.2.5 Efficiency
In the process of decryption, if the message is not rejected

before step three the decryption algorithm will require one
more exponentiation to finish the validity check. Messages
not intended for the receiver will be rejected before this point
(unless maliciously created) so the extra cost will only be
borne by the intended receiver. Since the exponentiation
will dominate the running time, the cost of decryption will
be about double that of standard ElGamal when decrypting
a message intended for that receiver. When a receiver at-
tempts to decrypt a message intended for someone else, the
decryption attempt will be about the same cost as standard
ElGamal.

The cost for encryption will be approximately the same
as in standard ElGamal.

3.3 An Implementation Using General
Assumptions

The implementation in the previous section is an efficient
construction of an Incomparable Public Key scheme. The
proof is heuristic since it is in the Random Oracle model.
We note that a similar scheme can be derived from general
assumptions, with no need for the Random Oracle model,
but with a minor added cost in running time. This is a
two-key scheme based on the two-key paradigm of Naor
and Young [13]. In this method the Incomparable Public
Key will consist of two randomly generated ElGamal Keys
(g1, g

a
1 ), (g2, g

b
2). An encrypted message will be of the form

(gr
1 , gar

1 K), (gr
2 , gbr

2 K), EK(r, (g1, g
a
1 ), (g2, g

b
2), message). We

give a detailed description of this construction and a proof
of security in Appendix C.

3.4 Light Version for Passive Receivers
We created our definition with a threat model that in-

cluded receivers replying to senders. In some circumstances
a receiver will receive messages and not give any indica-
tion to a sender whether messages were received correctly
or not. In this case we can relax our definition to not in-
clude a decryption oracle. We call receivers that behave like
this Passive Receivers.

A lighter version of our protocol exists for Passive Re-
ceivers. The key is again a randomly generated ElGamal key
(g, ga), but the ciphertext is just (g, garK), EK(message).
The proof of incomparability is derived directly from the
Decisional Diffie-Hellman assumption.

4. INCOMPARABLE PUBLIC KEYS
IN PRACTICE

4.1 Comparison with Other Methods
In this section we consider some alternative cryptographic

methods that might hope to achieve anonymity in the same
way as Incomparable Public Keys. We examine the signifi-
cant differences between each of these and an Incomparable
Public Key scheme and find that each of the alternative
methods considered in this section is deficient in some re-
spect compared to our method.

For each technique we will assume that the message is sent
to a multicast address.

4.1.1 Standard Asymmetric Key Scheme
One encryption alternative to using Incomparable Public

Keys is to use a standard asymmetric key scheme for en-
cryption. The receiver could generate one asymmetric key
pair and distribute the public key to all senders. However,
this allows the senders to determine that they are sending
to the same receiver, in violation of the requirements. If the
receiver leaks some information about its identity to each
sender, this method would allow the senders to aggregate
that information and learn too much about the receiver’s
identity.

4.1.2 Several Independent Symmetric Keys
Another alternative is to give each sender a unique sym-

metric encryption key, and have the receiver try decrypt-
ing each message with each of these symmetric keys. In
this approach, decryption time is linear in the number of
senders; however if there are not too many senders the per-
formance might still be better than an Incomparable Public
Key scheme, which uses asymmetric key operations. An-
other problem is that if an adversary gained access to the
sender’s key he would be able to read all messages sent by
that sender in the past.

4.1.3 Several Independent Public Keys
We could take a similar approach to the one above by

having the receiver generate a fresh asymmetric key-pair for
every sender. The receiver would give a new public key to
every sender and keep the new secret key. Then for every
message sent to the multicast address the receiver would
need to try all possible decryption keys until one worked
or all were exhausted. If an adversary gained access to the
sender’s key he would still be unable to read past messages
sent by the sender. In all other respects this method has all
of the drawbacks of the previous one.

4.1.4 Message Markers
Another possible method would be for the receiver to give

the senders a marker for identifying their messages and a
unique (symmetric or asymmetric) encryption key to de-
crypt messages. These markers could be used by the receiver
to determine which decryption key to use. This technique
has the advantage that the receiver need not waste time de-
crypting messages that are not intended for him and that at
most one decryption is needed.

The same marker cannot be used twice without alerting
an eavesdropper that the two messages have the same des-
tination, so a fresh marker would need to be generated and
used for each message. This requirement of a fresh marker
creates a need for synchronization between sender and re-
ceiver, which would apparently require additional message
traffic between them that could endanger anonymity. For
example, if the markers are random nonces, then communi-
cation would have to be two-way, so that the receiver could
periodically send along new nonces.

4.1.5 Summary of Comparisons
Through these comparisons we can see the advantages

of using an Incomparable Public Key scheme to realize an
anonymous identity. First, an Incomparable Public Key
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scheme allows true receiver anonymity as opposed to pseudo-
anonymity. Second, the work spent per message does not in-
crease with the number of potential senders of the message.
An anonymous identity that uses Incomparable Public Keys
can be used repeatedly to encrypt and send messages with-
out communication from the receiver. Finally, using an In-
comparable Public Key scheme is robust in the face of mes-
sage loss. If any number of messages are lost, the receiver
will still be able to read the next one that gets through.

4.2 Efficiency in Practice
We analyze the efficiency of receiving messages in a sys-

tem that uses Incomparable Public Keys as follows. Suppose
there are r receivers on a channel and (for simplicity) n mes-
sages are sent to each particular receiver per second. Then
each receiver will need to perform rn decrypt operations
per second. (ElGamal (1024 bit) decryption in a particu-
lar software package was measured to take ∼ 5.8ms on an
850Mhz Celeron processor [6]. This implies that a conven-
tional machine can decrypt about 170 messages per second.)
One can see how there is a simple trade-off of anonymity,
measured by r, and efficiency, measured by n. Suppose an
Incomparable Public Key scheme were not used and an in-
dependent public/private key pair were generated for every
possible sender of a message. If there were m senders per
receiver then the efficiency would go down by approximately
a factor of m as all m private keys would have to be tried
for each incoming message.3

This analysis applies to a simple multicast channel. In-
comparable Public Keys can also be used in other environ-
ments. For example, the protocol P5 is a peer-to-peer sys-
tem that allows participants to tradeoff efficiency in com-
munication for increased anonymity by placing themselves
in certain communication groups [18]. The efficiency analy-
sis in these systems is more complicated, but if Incompara-
ble Public Keys are used, then each receiver only needs to
execute one decryption operation per incoming message.

4.2.1 Secure Sessions via SKEME Key Exchange
In practice, parties will often initiate a key exchange using

public-key cryptography to derive a temporary shared sym-
metric key. The parties can then communicate over a secure
session using the shared symmetric key. The communica-
tion over the session will then be efficient since symmetric
key cryptography is used.

Incomparable Public Keys can be used to initiate secure
key exchanges. We illustrate this by describing how the
popular SKEME [11] key exchange protocol can be modified
to include Incomparable Public Keys. The SKEME protocol
is diagrammed in Figure 1. In the diagrammed version the
initiator, I, engages in a Diffie-Hellman key exchange. The
initiator verifies the Diffie-Hellman component sent from the
responder is authentic using public key encryption.

We can use Incomparable Public Keys to protect respon-
der anonymity. In the first step the initiator will send the
initiation message to a multicast address and encrypt it with
an Incomparable Public Key. Of all the listeners on the mul-
ticast channel only the intended responder will be able to
correctly decrypt the message.

3This is not exactly true because after a successful decryp-
tion of a message the receiver would not try any more of
its keys. However, as r becomes large this approximation
becomes correct.

After the completion of these steps the parties will share a
session key. In continuing the session the initiator will send
messages to the multicast channel. However, the responder
still has the problem of determining which session messages
that were encrypted with symmetric key messages belong
to him. One of the alternative methods listed in Section 4.1
might be used for this.

Even though we argued against such methods for estab-
lishing communication, they could be useful for maintaining
an open session. We derive this from the fact that the num-
ber of potential parties that may contact a host will typically
be much larger than the number of sessions open at any one
time. Thus we see that Incomparable Public Keys can be
used for the initiation of a session when the number of pos-
sible initiators is large, after which we can switch to method
that is more efficient for open sessions.

I R

��EKR(KA, KI), sx

K0 = H(KA, KB)

�� EKI (KB), sy, HMACK0(s
x, sy)

KS = H(sxy)

Figure 1: The SKEME protocol where only the respon-
der is authenticated. The parties use KS as their session
key that was derived from a Diffie-Hellman key exchange.
The exchange is authenticated using public key encryption
instead of signing.

4.3 Implementation
In this section, we describe a prototype implementation

that demonstrates how our method could be used in prac-
tice. We chose to implement the prototype by extending
an existing application in order to show that our method is
easily adapted to the needs of established applications.

We implemented our scheme by modifying the popular
Pretty Good Privacy (PGP) encryption software suite [3].
In particular, we modified GnuPG 1.2.0 [21], a free soft-
ware replacement for PGP. PGP already enjoys a large num-
ber of users, many of whom are interested in protecting
receiver anonymity. Some of these users direct senders to
send encrypted messages to anonymous newsgroups such as
alt.anonymous.messages. The receiver attempts to maintain
anonymity among all of the readers of the newsgroup. These
newsgroups can be viewed as multicast addresses.

Our prototype uses the ElGamal-based encryption scheme
of Section 3.4. Fortunately, the GnuPG software already
included an implementation of the standard ElGamal algo-
rithm, so we were able to reuse most of the existing code.
Our Incomparable Public Key scheme is presented to the
user as a separate algorithm, leaving the original signing
and encryption algorithms intact.

The most significant modifications we made to the code
were in the public key export function. PGP’s public key
export function allows a user to take a public key from his
public key database and export it into a text file. Another
user may then add that public key to their database by “im-
porting” the public key from that file into their database.
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We modified the key export function so that it wrote into
the file a newly generated public key that is incomparable
but equivalent to the one in the user’s database. The ef-
fect of this is that whenever a user passes a public key to
another user, the key that is passed will be a new, incompa-
rable one; so different users’ databases will contain different,
Incomparable Public Keys for the same receiver.

A few other code changes were required. For example, we
changed the code to use the same (suitably chosen) 1024-bit
prime as the modulus in all Incomparable Public Keys, so
as to avoid leaking information in the modulus. PGP also
attaches to each key an identifying user ID, consisting of
the key owner’s name and e-mail address. We effectively re-
moved the user ID by modifying the code to attach the same
dummy user ID to all keys. A sender who has multiple keys
to manage can still refer to them by their key fingerprints.

The encryption and decryption functions were kept un-
changed. PGP by default appends the fingerprint of the
key used for encryption to an encrypted message. A user
can invoke an option to disable this feature and encrypt in
what PGP calls “anonymous receiver” mode. We enforce
the use of this option for all messages encrypted with an
Incomparable Public Key.

The code for our implementation is available at http:
//www.cs.princeton.edu/~bwaters/research.

5. SUMMARY
We have seen that the correct choice of an encryption

scheme is a crucial aspect to providing true receiver
anonymity. Current encryption techniques either allow keys
to be compared, which degrades anonymity, or require the
receiver to try a large number of keys for each decryption.
We solve this problem by introducing a new type of en-
cryption scheme, which we call an Incomparable Public Key
scheme. Using an Incomparable Public Key scheme a re-
ceiver can generate a large number of equivalent public keys.
Anonymity is maintained since public keys cannot be tested
for equivalence. The scheme is efficient because only one
secret key needs to be used for decryption. We were able
to realize an Incomparable Public Key scheme by making
novel use of the ElGamal cryptosystem.

We then analyzed our scheme in a practical setting and
found that it offered the best combination of efficiency and
true receiver anonymity for when there were many possible
senders. Finally, we implemented our Incomparable Public
Key scheme into the popular GnuPG software encryption
suite.
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APPENDIX

A. INCOMPARABLE PUBLIC KEY DEFI-
NITION

In this section we formally define the Generation of Public
Keys requirement and the Key-Privacy requirement given in
Section 3.

For the discussion we will use the following notation. G
will serve as a common key generator that given a security
parameter k will produce the common key I. I will serve
as a common global parameter for key generation. K is a
secret key generation algorithm that given I will randomly
generate a secret key. L is an algorithm that given a private
key will randomly generate a corresponding Incomparable
Public Key.

A.1 Generation of Public Keys
We define the following two experiments. We derive I R←

G(k) as the global parameter shared by both experiments.

Experiment1(I,K, L)
sk0

R← K(I)
pk0

R← L(sk0)
pk1

R← L(sk0)
output(pk0,pk1)

Experiment2(I,K, L)
sk0

R← K(I)
sk1

R← K(I)
pk0

R← L(sk0)
pk1

R← L(sk1)
output(pk0,pk1)

The Generation of Public Keys requirement is then sat-
isfied if no (computationally bounded in poly-time(k)) ad-
versary A can gain more than a negligible advantage when
attempting to distinguish the output from the two experi-
ments. We give the adversary a decryption oracle, O and
denote the adversary as AO.

In Experiment1 the two equivalent public keys were de-
rived from the same private key, whereas in Experiment2
two non-equivalent public keys were generated from two dif-
ferent private keys that were generated to the same set of
global parameters.

A.2 Key-Privacy
We require that an Incomparable Public Key scheme meets

Bellare et al.’s Key-Privacy requirement [1]. Specifically, we
require the indistinguishability of keys under chosen plain-
text attack. Suppose an adversary is given two public keys
and a ciphertext message that was encrypted with one of
the public keys. The Key-Privacy requirement states that

an adversary will have at most a negligible advantage in de-
termining which key was used for encrypting the message.

In Bellare et al.’s definition the authors define an exper-
iment where the two public keys are both generated ran-
domly and independently. We also want the Key-Privacy
property to hold for the case when two public keys are cho-
sen randomly, but derived from the same private key (i.e.,
the keys are equivalent). We define two experiments to de-
fine Key-Privacy as it pertains to Incomparable Public Keys.
The first one is the same as Bellare et al.’s and the second
one is adjusted slightly to account for equivalent public keys.

Let A be any (computationally bounded in poly-time(k))
adversary, x be a message chosen by the adversary to be en-
crypted, s be state information that the adversary uses, and
E be the encryption algorithm. I R← G(k) is the common
global parameter.

Experimentnon−equivkeys(b, I,K, L)
sk0

R← K(I)
sk1

R← K(I)
pk0

R← L(sk0)
pk1

R← L(sk1)
(x, s) R← A(“find x”, pk0, pk1)
y R← Epkb

(x)
d R← A(“guess b”, y, s)
output(d)

A scheme is secure if all adversaries have at most a negligible
advantage in guessing b.

The second definition is as follows.

Experimentequivkeys(b, I,K, L)
sk0

R← K(I)
pk0

R← L(sk0)
pk1

R← L(sk0)
(x, s) R← A(“find x”, pk0, pk1)
y R← Epkb

(x)
d R← A(“guess b”, y, s)
output(d)

Both public keys are derived from the same private key.
Again a scheme is secure if all adversaries have at most a
negligible advantage in guessing b.

Bellare et al. show that the first definition of Key-Privacy
holds for the ElGamal cryptosystem if the cryptosystem is
secure. The second definition of Key-Privacy will hold un-
conditionally for two equivalent ElGamal keys since any par-
ticular encryption of a message is equally likely to have come
from either one of two equivalent keys.

B. PROOF FOR ELGAMAL IMPLEMEN-
TATION

We re-examine the experiment defined in Appendix A.1
with the ElGamal implementation substituted in. We as-
sume the global parameter I = p (the prime component of
a key) has already been generated.

Experiment1(I, K, L)
a = sk0

R← K(I)
(g, ga) = pk0

R← L(sk0)
(g′, g′a) = pk1

R← L(sk0)
output(pk0,pk1)
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Experiment2(I, K, L)
a = sk0

R← K(I)
a′ = sk1

R← K(I)
(g, ga) = pk0

R← L(sk0)
(g′, g′a′

) = pk1
R← L(sk1)

output(pk0,pk1)

In each distribution a decryption oracle, O, is provided.
The oracle is instantiated with private keys and with one
or more valid public keys for each private key. The oracle,
when give a ciphertext, will output a list of valid decryptions
of that ciphertext given for the keys it has.

We prove that there cannot exist a (poly-time) distin-
guisher, AO, between the two experiments. We prove this
by contradiction. Suppose there is a distinguisher between
the two experiments. We can take advantage of it in the fol-
lowing manner. We will build a distinguisher that can tell
if a quadruple is a Diffie-Hellman quadruple4 with greater
than negligible advantage. Our technique is to take the
quadruple (w1, w2, w3, w4) and call the distinguisher with
AO((w1, w2), (w3, w4)). To use the distinguisher we will also
need to be able to simulate the decryption oracle in the
Random Oracle model (we show how to do this in the next
subsection). We notice that if AO can distinguish between
the two experiments this corresponds exactly with our dis-
tinguisher being able to distinguish between Diffie-Hellman
quadruples, which is assumed to be hard. We now show
that we can simulate the decryption oracle to complete our
proof.

B.1 Simulator Construction
We will build a simulator of the decryption oracle de-

scribed above. The simulator is initiated with the public
keys (w1, w2) and (w3, w4).

The decryption oracle simulator acts as follows. When
a query is made to the random oracle, H, the simulator
randomly chooses a bitstring, h, as a response and records
the query/response pair in a table. The chances of a collision
are negligible in the security parameter.

A decryption query is of the form ((d, e), h, M). The sim-
ulator will have access to the two public keys and the oracle
query table, but not the corresponding private key(s). For
both public keys the simulator will take the following ac-
tions. For convenience we describe the actions in terms of
the first key (w1, w2) = (g, ga) for some a. Keep in mind
that the simulator does not know a. The simulation will be
repeated for the key (w3, w4).

1. Look up h in the response half of the random oracle
query table and set r to be the corresponding query.
If no entry for h exists, reject the decryption. The
chances of success are negligible if the oracle was not
consulted to get h.

2. Compute K = e
(ga)r and decrypt the envelope, M , to

get r′,PublicKey,message.

3. Reject if r′ �= r or if the public key from the envelope
is not the one being used in the simulation.

4. Reject if d �= gr.

5. If not rejected, output message.
4A Diffie Hellman quadruple is of the form (g1, g

a
1 , g2, g

a
2 )

where g1 and g2 are generators of the group.

We now show that our simulator is equivalent to the true
decryption oracle with very high probability. The true de-
cryption oracle will have access to the valid public keys and
the private keys. Our simulator has access to the valid public
keys and runs the random oracle. The simulator and decryp-
tion oracle are equivalent if every message that is output by
the true oracle is output by the simulator and every message
output by the simulator is output by the true oracle.

Suppose the true decryption oracle accepts and outputs
a certain message. The cryptographic envelope would then
have to contain a valid public key (g, ga) that our simula-
tor would have access to. The envelope would also contain r
where h = H(r). Our simulator would (with very high prob-
ability) have derived the same r from h and the random ora-
cle query table. The final check of the true decryption oracle
is that d = gr. The true oracle gets the decryption envelope
key K by dividing e by da = (gr)a = (ga)r. However, in
our simulation for key g, ga we will have divided e by (ga)r

and then performed the same authenticity checks. There-
fore any messages that are decrypted by the true oracle are
decrypted by our simulator with very high probability.

Suppose a message were decrypted by our simulator using
the hash table and public key (g, ga). Then the simulator
is able to get r from h and the random oracle table. The
simulator gets the envelope key K by dividing e by (ga)r.
However, after the simulator decrypts the envelope it checks
that the public key being used is g, ga and that d = gr. The
true decryption oracle that has the secret key a will divide
e by da = gar and compute the same K as the simula-
tor. The simulator is able to perform the same authenticity
checks as the decryption oracle. The simulator simulates
the decryption oracle correctly since with high probability
the simulator will decrypt a message if and only if the true
decryption oracle will.

C. TWO-KEY IMPLEMENTATION
In Section 3.3 we stated that there existed a construction

of an Incomparable Public Key scheme for which the security
proof could be made outside the Random Oracle model. We
now present a detailed description of the construction and
a proof of the Incomparable property.

C.1 Description

C.1.1 Structure of Keys
All receivers share a prime p where q = p−1

2 is a prime.
The public key consists of two ElGamal public keys (g1, g

a
1 ),

(g2, g
b
2) where g1 and g2 are quadratic residues in Z∗

p . Again
the receiver records the public key pair to mark them as
being valid.

C.1.2 Encryption
To encrypt a message the sender will first randomly choose

a key K for a symmetric cipher. He will then encrypt the
message as (gr

1, g
ar
1 K), (gr

2 , gbr
2 K), EK(r, (g1, g

a
1 ), (g2, g

b
2),

message).

C.1.3 Decryption
Suppose a message is received of the form ((d, e), (i, j), M).

Decryption will proceed as follows.
1. Let K = e

da . Also check that the same K = j
ia Use K

to decrypt the envelope M . This decryption gives us
r, g1, g

a
1 , g2, g

b
2, message.
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2. Check that the public keys inside the envelope have
been recorded as a valid ones.

3. Check that gr
1 = d, gr

2 = i where (g1, g
a
1 , g2, g

b
2) is the

key in the envelope.
4. If any of these checks fail, disregard the message; oth-

erwise the decryption is message.

C.1.4 Key-Privacy
Key-Privacy follows for the same reason as in original con-

struction.

C.1.5 Efficiency
Encryption requires two exponentiations to use both com-

ponents of the public key. A successful decryption requires
four exponentiations, however, an unsuccessful decryption
can be detected after one exponentiation.

C.2 Proof for two-key implementation
Again the common global parameter I = p where p is a

strong prime. We define three experiments.

Experiment1(I,K, L)
a, b = sk0

R← K(I)
(g1, g

a
1 , g2, g

b
2) = pk0

R← L(sk0)
(g′

1, g
′
1

a
, g′

2, g
′
2

b) = pk1
R← L(sk0)

output(pk0,pk1, )

Experiment2(I,K,L)
a, b = sk0

R← K(I)
a′, b′ R← K(I)
a′, b = sk1

(g1, g
a
1 , g2, g

b
2) = pk0

R← L(sk0)
(g′

1, g
′
1

a′
, g′

2, g
′
2

b) = pk1
R← L(sk1)

output(pk0,pk1)

Experiment3(I, K, L)
a, b = sk0

R← K(I)
a′, b′ = sk1

R← K(I)
(g1, g

a
1 , g2, g

b
2) = pk0

R← L(sk0)
(g′

1, g
′
1

a′
, g′

2, g
′
2

b′
) = pk1

R← L(sk1)
output(pk0,pk1)

For each experiment the adversary, AO, will be given an
oracle that knows the private and public keys from the ex-
periment. Again it will output a list of all legal decryptions
of a ciphertext when given that ciphertext as input.

Suppose that an adversary can break our scheme and thus
distinguish between Experiment1 and Experiment3. Then
the same adversary can either distinguish between Experi-
ment1 and Experiment2 or between Experiment2 and Ex-
periment3 (or both). We prove this is impossible by con-
tradiction. First, let’s suppose we are in the case where AO

can distinguish between experiments one and two. We will
build a distinguisher than can tell if a quadruple is a Diffie-
Hellman quadruple. Let our quadruple be (w1, w2, w3, w4).
We will then call AO((w1, w2, g2, g

b
2), (w3, w4, g

′
2, g

′
2

b)), where
g2,g′

2 and b are chosen randomly. If the quadruple is a Diffie-
Hellman quadruple then we passed the adversary input from
Experiment1, otherwise we passed an input drawn from Ex-
periment2. Thus, if we can simulate the decryption oracle
we can distinguish Diffie-Hellman quadruples, which is as-
sumed to be hard.

C.3 Simulator Construction
Using similar arguments to those of Appendix B.1 we

build a simulator of the decryption oracle described above.
The simulator is initiated with input from one of the ex-
periments. It knows the public keys (w1, w2, g2, g

b
2) and

(w3, w4, g
′
2, g

′
2

b) and the private key b.
The simulator will be able to use the knowledge of the pri-

vate key b to begin decryption of the envelope, and will use
the information inside to check the validity of the message.

A decryption query is of the form ((d, e), (i, j), M). For
both public keys the simulator will take the following ac-
tions. For convenience we describe the actions in terms of
the first key (w1, w2, g2, g

b
2) = (g1, g

a
1 , g2, g

b
2) for some a that

is unknown to the simulator.

1. Compute K = j
ib and decrypt the envelope to get

r′,PublicKey,message.

2. Reject if the public key inside the envelope is not the
one being used in the simulation.

3. Reject if d �= gr′
1 ,i �= gr′

2 , or K �= e
(ga

1 )r .

4. If not rejected output message.

We now show that the output from the simulator matches
the output from a true decryption oracle. Suppose the true
decryption oracle accepted a message. Then the key K that
was used by the true decryption oracle to decrypt the en-
velope could be derived from either of the two ElGamal en-
cryptions. Otherwise the message would have been rejected
by the decryption oracle.

The simulator can use its knowledge of the private key, b,
to derive K from the second ElGamal encryption. Once it
opens the envelope using K it will perform the same validity
checks that the true random oracle performs. Additionally,
it will use the knowledge of r and the public keys to check
that the both ElGamal encryptions are encryptions of the
same K. This ensures that the simulator doesn’t accept any
messages that the true oracle rejects. Likewise, the oracle
only accepts messages that the simulator does. Therefore,
the simulator is equivalent to the decryption oracle.

C.4 Case 2
There is also the possibility that the adversary can only

distinguish between Experiment2 and Experiment3. In that
case we call AO((g1, g

a
1 , w1, w2), (g′

1, g
′
1

a′
, w3, w4)) when

given a possible Diffie-Hellman quadruple (w1, w2, w3, w4).
If it is a Diffie-Hellman tuple, the input matches Experi-
ment2, otherwise it matches Experiment3. The decryption
simulator will know the public keys that were input to the
adversary and the private keys a, a′. The simulator is built
analogously to the one described above by using the private
keys it knows as hints for decryption.
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