
WhoPay: A Scalable and Anonymous Payment System for Peer-to-Peer
Environments

Kai Wei
CS Division, Dept. of EECS

University of Cailfornia, Berkeley
Berkeley, CA 94720 USA
kwei@cs.berkeley.edu

Yih-Farn Robin Chen
AT&T Labs-Research

180 Park Ave
Florham Park, NJ 07932-0971 USA

chen@research.att.com

Alan J. Smith
CS Division, Dept. of EECS

University of Cailfornia, Berkeley
Berkeley, CA 94720 USA
smith@cs.berkeley.edu

Binh Vo
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02138 USA

bdv@mit.edu

Abstract

An electronic payment system ideally should provide se-
curity, anonymity, fairness, transferability and scalability.
Existing payment schemes often lack either anonymity or
scalability. In this paper we propose WhoPay, a peer-to-
peer payment system that provides all the above proper-
ties. For anonymity, we represent coins with public keys; for
scalability, we distribute coin transfer load across all peers,
rather than rely on a central entity such as the broker. This
basic version of WhoPay is as secure and scalable as exist-
ing peer-to-peer payment schemes, while providing a much
higher level of user anonymity. We also introduce the idea of
real-time double spending detection by making use of dis-
tributed hash tables (DHT). Simulation results show that
the majority of the system load is handled by the peers un-
der typical peer availability, indicating that WhoPay should
scale well.1

1 Introduction

E-commerce is rapidly becoming the preferred way for
many consumers to obtain goods and services. Payments
for such transactions on the Web are frequently fulfilled us-
ing credit cards or an online payment system such as Pay-

1Principal funding for this research has been provided by AT&T Lab-
oratories; the work conducted at UC Berkeley has also been supported by
the State of California under the MICRO program and by Toshiba Corpo-
ration.

Pal [13]. These electronic payment systems generally in-
cur considerable cost per transaction. For example, most
credit card processors charge merchants a minimum fee of
between 15 and 35 cents per transaction [10]. As a con-
sequence, these payment schemes are generally considered
unsuitable for items that cost $5 or less. Micropayment sys-
tems, which try to aggregate many small micropayments
into a few bigger payments, are designed to address this is-
sue.

Another issue with traditional payment technologies like
the credit card system and PayPal is the lack of privacy pro-
vided to the parties involved in the transactions. With credit
cards or PayPal, the identities of the payer and payee of each
transaction are exposed not only to each other, but also to
the credit card companies or PayPal.com. These exposed
identities, together with the transaction itself, can reveal
precious or sensitive information about the parties involved.
In response to this concern, numerous anonymous payment
systems [25] have been proposed to hide user identities dur-
ing transactions, mostly by using blind signatures [6] or
public key cryptography.

Unfortunately, total anonymity makes it more difficult to
punish fraud such as double spending and enables crimes
such as blackmail and money laundering. What we really
want is a payment system where users remain anonymous
under normal circumstances but a trusted authority, called
the judge, can act on behalf of law enforcement to reveal
relevant identities when appropriate. The notion of fairness
was introduced by Camenisch [3] to describe this property.
Vo and Hohenberger have proposed such a fair system [25].

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

A common characteristic of all the above payment
schemes is the use of a central authority, which we refer
to in general as the broker. This presents a scalability and
performance bottleneck. While credit card companies and
PayPal have so far been able to sustain the ever growing
transaction load by increasing investment in hardware, this
certainly sets the threshold for entry to the payment business
very high and makes it infeasible for use in many applica-
tions. For example, one can imagine a pay-per-download
file sharing system, where a virtual payment system is used
to encourage fair sharing of resources among peers. Rely-
ing on a broker in such a system would present an unfair
cost to a single entity.
PPay [26] is a scalable payment system that is inspired

by the success of P2P file sharing systems. Such systems as
KaZaA [12] can scale to millions of peers because they pool
together and harness the massive resources at the “edge” of
the network, rather than relying on expensive centralized
resources. As noted by its authors, PPay exploits two main
characteristics of P2P applications:

• Peers are generally both consumers and merchants.
Thus, coins can be respent repeatedly between users
before involving the broker.

• Redistributing the broker’s load onto the peers grants
better scalability and performance properties than in
existing payment systems.

PPay is secure, fair and scalable, but provides no
anonymity. In contrast, the Vo-Hohenberger system is se-
cure, anonymous and fair, but is not scalable. In this paper,
we propose WhoPay, a P2P payment system that is secure,
anonymous, fair, and scalable, thus combining the best of
both worlds.
The rest of the paper is organized as follows. In the next

section, we will formally define our design goals. Then in
Section 3, we will describe some background information
that should help us understandWhoPay’s architecture. This
is followed by the description of the basic version of Who-
Pay in Section 4. Several extensions to this basic design
will be introduced in Section 5, including a real-time dou-
ble spending detection mechanism and others that further
improve the anonymity property of WhoPay. We present
our simulation work in Section 6 and discuss related work
in Section 7. We conclude in Section 8.
Notation: We will letB denote the broker, pkX the pub-

lic key of some entity X , skX the private key of X , and
gkX the group private key of X . A message M signed by
some keyK is denoted as {M}K .

2 Design Goals

Vo and Hohenberger defined a set of desirable prop-
erties for digital payment systems, denoted SAFT, which

stands for Security, Anonymity, Fairness, and Transferabil-
ity [25]. These properties were defined with the assumption
that every coin transfer goes through the broker. We will
adopt their terminology, but slightly redefine each property
to make it applicable to our peer-to-peer design.

• Security: The value of coins can not be tampered with.
This means, only the broker can generate coins or in-
crease the value of coins, and only the current holder
of a coin can transfer, destroy, or decrease the value of
the coin. This guarantees that no user can manipulate
the system for profit or to harm another.

• Anonymity: Payer and payee do not need to reveal their
identities to any third party. This means, without the
help of the judge, nobody (other than the participants
themselves) can identify the participants of a transac-
tion with probability better than random guessing. Op-
tionally, payer and payee can hide identities from each
other.

• Fairness: The broker and the judge, working together,
can reveal the identities of all parties involved in a par-
ticular transaction. If possible, this process should not
reveal any information about other transactions.

• Transferability: The recipient of a coin can use the
same coin to pay another user without identifying him-
self to the broker. All systems mentioned in this paper
support transferability and thus this property will not
be the focus of our discussion.

Additionally, we want to reduce broker load:

• Scalability: The load of any particular entity does not
grow to be unmanageable as the size of the system
increases. In particular, the majority of the transac-
tion load should be distributed among peers rather than
handled by the broker.

3 Preliminaries

Before we present the WhoPay design, we first briefly
describe some background information that will help us
understand the architecture of WhoPay, namely PPay and
group signatures.

3.1 PPay

PPay is a payment scheme designed for P2P systems. In
PPay, user U purchases coins from the broker, and hence
becomes the owner and holder of the coins. To spend the
coins he owns, U issues the coins to another user, say V .
After the issue, V becomes the current holder of the coins,
but U remains their owner. If V wants to pay yet another

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

user W with these coins, he can transfer these coins to
W via U , the coins’ owner. After the transfer, V relin-
quishes his holdership of the coins andW becomes the cur-
rent holder of the coins; U remains the owner of the coins.
W can further transfer these coins to others, and so on. Only
the holder of a coin can spend the coin. Or, the holder can
choose to deposit the coin at the broker for cash.
The main challenge in this scheme is to ensure that the

security properties are not compromised, since we now
want high frequency operations such as transfers to be per-
formed by untrusted peers. As PPay is designed as a mi-
cropayment scheme, in that each payment is of a small
amount, utmost security is not required; a security model
where fraud is detectable (even after the fact) and punish-
able is probably good enough in most cases. PPay achieves
such security as follows.
When user U purchases a coin from the broker, the coin

is in the following form:

C = {U, sn}skB

where sn is the serial number of a coin that uniquely iden-
tifies it. Once issued, the coin becomes:

Coin = {C, H, seq}skU

where H is the current holder of the coin, and seq is a se-
quence number. The coin owner maintains a sequence num-
ber counter for the coin and increments the coin’s sequence
number each time it is issued or transferred. For example,
to issue the coin C to user V , U sends V :

CV = {C, V, seq1}skU

which also serves as a proof of issue. Now for V to transfer
the coin to W , V sends the following transfer request to
owner U :

{W, CV }skV

and U will keep a record of this transfer request in order to
later prove that V has “relinquished” the holdership of the
coin, in case of a dispute. Finally, U sendsW :

CW = {C, W, seq2}skU

which also serves as a proof of transfer. Note that seq2 must
be greater than seq1.
In summary, a coin explicitly contains the identities of

both owner and holder; users sign their messages with their
private keys, and keep audit trails of these signatures. These
features ensure the “good enough” security mentioned ear-
lier.
Finally, in practice peers come and go, so how do we

deal with coins whose owners are offline (we will call such
coins “offline coins” from now on)? To address this issue,
PPay includes a downtime protocol, in which the broker

temporarily handles the transfer/renewal of offline coins and
keeps relevant state. Peers must synchronize state with the
broker after they rejoin the system.
It is easy to see that PPay provides very weak, if any,

anonymity for the parties involved in a transaction. For ex-
ample, during coin transfer, the payee knows who the payer
is and vice versa, and the coin owner knows who the payee
and the payer are and thus can construct a complete trans-
action history for each coin it owns. In Section 4, we will
describe how to modify this scheme to provide anonymity
while preserving security, fairness and scalability.

3.2 Group Signatures

In the group signature protocol proposed by Chaum et
al [7], a group consists of n private keys G1, . . . , Gn, one
master public keyGp, and one master private keyGs. Each
of G1, . . . , Gn can be used to sign a message. The master
public key Gp can be used to verify that the message was
signed by one of G1, . . . , Gn, but cannot tell by which one.
The master private key Gs can be used to pinpoint which
key was used. Gs is also used to generate new private keys.
WhoPay uses group signatures to achieve fairness. Every

user is required to register with a trusted authority, called
the judge. The judge assigns each user U a (distinct) private
key, denoted as gkU , from a group2 and records the user’s
identity with the private key. The judge also keeps the mas-
ter private key to herself. (In practice, this master private
key can be divided among N judges using Shamir’s secret
sharing protocol [22] and at least K judges are needed in
order to recover the key; but we will make this assumption
implicit in the rest of our discussions.) Whenever a user
wants to remain anonymous, it signs its messages with its
group private key rather than its regular private key. These
signatures allow everyone to verify (using the master pub-
lic key) that the signer is a legitimate user in the system but
do not expose its true identity under normal circumstances.
However, once a fraud is detected, the judge can be called in
to reveal the identities of the bad guys. This way, anonymity
is preserved and justice is served.

4 WhoPay

4.1 Overview

WhoPay inherits its basic architecture from PPay. Coins
have the same lifecycle as in PPay. Users purchase coins
from the broker and spend them by issuing them to other
users, who can either spend them by transferring them or
deposit them at the broker for cash. Coins must be re-
newed periodically to retain their value. Coins get trans-

2Yes, all users belong to the same group in WhoPay.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Figure 1. The WhoPay Model: (1) U purchases coin
from broker; (2) U issues coin to V ; (3) V transfers coin
toW through U ; (4)W deposits coin at broker.

ferred/renewed via the coins’ owners if they are online, or
via the broker otherwise (Figure 1).
The first major difference of WhoPay from PPay is that

coins are identified by public keys, rather than serial num-
bers. To purchase a coin, user U generates a random pub-
lic/private key pair pkCU /skCU , keeps the private key skCU

secret and asks the broker to sign the public key pkCU .
3 The

broker sends the coin back in the following form:

C = {U, pkCU}skB

where pkCU should (with very high probability) uniquely
identify the coin. Once issued, the coin becomes:

Coin = {C, pkCH , seq, exp date}skU

where H is the current holder of the coin, exp date is the
expiration date of the coin, and seq is the sequence number
of the coin and serves the same function as in PPay. For
example, to issue the coin C, the payee V generates a ran-
dom public/private key pair pkCV /skCV , keeps the private
key skCV secret and asks the coin ownerU to sign the bind-
ing (pkCU , pkCV). The binding (pkCU , pkCV) means “coin
pkCU is now represented by pkCV ”, and is a way of con-
veying the information of who the current holder of a coin
is, in that whoever knows the private key skCV is the cur-
rent holder of the coin pkCU . At any point of time, each
user remembers one such binding for each coin it owns. To
complete the issue procedure,U sends V :

CV = {C, pkCV , seq1, exp date1}skU

3As different users generate these public/private key pairs indepen-
dently, there is a probability of key collision. Key size and renewal period
can be chosen to keep this probability small enough so that, the broker can
absorb the risk.

which also serves as a proof of issue. Similarly, for V to
transfer the coin, the intended payee, say W , also gener-
ates a random public/private key pair pkCW /skCW , keeps
the private key skCW secret and sends the public key pkCW

to V . V then sends the following transfer request to owner
U :

{{pkCW , CV }skCV
}gkV

and U will keep a record of this transfer request in order to
later prove that V has “relinquished” the holdership of the
coin, in case of a dispute. Finally, U sendsW :

CW = {C, pkCW , seq2, exp date2}skU

which also serves as a proof of transfer. Note that seq2 must
be greater than seq1.

4.2 Protocol Details

The details of the WhoPay protocols are given below.
Purchase: To purchase a coin from the broker, user U

generates a random public/private key pair pkCU and skCU .
He keeps skCU to himself and sends pkCU along with his
identity (e.g., in the form of a public key certificate) signed
by his private key skU to the broker. After verifying the sig-
nature, the broker adds pkCU to the list of valid coins, signs
the coin with its private key and sends it back to U . The
transaction completes after U verifies the broker’s signa-
ture. It should be straightforward to modify this procedure
to purchase coins in batch.
Issue: For U to issue V a coin pkCU , V generates a ran-

dom public/private key pair pkCV and skCV , keeps skCV to
himself, and sends pkCV toU . U sends V the broker-signed
coin pkCU , and answers a challenge by V to prove he is
the owner of the coin. U then updates its coin binding list
to bind pkCU to pkCV , a randomly chosen sequence num-
ber and an appropriate expiration date. U signs the binding
with skCU , and sends V the signed binding, which serves as
a proof of issue of the coin to V . The transaction completes
after V verifies the signature.
Transfer: For V to transfer W a coin pkCU , W gen-

erates a random public/private key pair pkCW and skCW ,
keeps skCW to himself, and sends pkCW to V . V sends
the coin owner U a transfer request identifying pkCU and
pkCW . The transfer request is signed with both skCV and
V ’s group private key gkV , with the first to prove V ’s hold-
ership of the coin and the second to help ensure the fairness
of the system. After receiving this transfer request and ver-
ifying it is a valid request, U sends W the broker-signed
coin pkCU , and answers a challenge by W to prove he is
the owner of the coin. U then updates its coin binding list to
bind pkCU to pkCW , an incremented sequence number and
an appropriate new expiration date. U signs this binding
with skCU and sends W the signed binding, which serves

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

as a proof of transfer of the coin to W . The transaction
completes afterW verifies the signature.
Deposit: For W to deposit a coin pkCU , it sends a de-

posit request to the broker identifying the coin to be de-
posited. The deposit request is signed with both skCW and
W ’s group private key gkW . After receiving this deposit
request and verifying it is a valid request, the broker sends
payment toW .
Renewal: For W to renew a coin pkCU , it sends a re-

newal request to the coin ownerU identifying the coin to be
renewed. The renewal request is signed with both skCW and
W ’s group private key gkW . After receiving this renewal
request and verifying its validity, U updates its binding for
pkCU with an incremented sequence number and an appro-
priate new expiration date. U signs this updated binding
with skCU and sends W the signed binding, which serves
as a proof of renewal. The transaction completes after W
verifies the signature.
Downtime transfer: For V to transfer W a coin pkCU

(when the coin owner U is down) via the broker, W gen-
erates a random public/private key pair pkCW and skCW ,
keeps skCW to himself, and sends pkCW to V . V sends the
broker a transfer request identifying pkCU and pkCW . The
transfer request is signed with both skCV and V ’s group
private key gkV . After receiving this transfer request and
verifying it is a valid request, the broker records the binding
of pkCU to pkCW , an incremented sequence number and an
appropriate new expiration date. The broker signs this bind-
ing with skB and sendsW the signed binding, which serves
as a proof of transfer of the coin toW . The transaction com-
pletes afterW verifies the signature.
In the details, there are two flavors of the downtime

transfer protocol, depending on whether the coin was last is-
sued/transferred/renewed through its owner, or was it trans-
ferred/renewed through the broker. In the first case, most
likely the broker has not established any state about the coin
and thus needs to verify the coin owner’s signature. In the
second case, most likely the broker has the up-to-date bind-
ing information for the coin and only needs to perform a
bit-by-bit comparison of the signed binding received to the
locally stored signature.
Downtime renewal: For V to renew a coin pkCU via the

broker, V sends the broker a renewal request identifying
the coin to be renewed. The renewal request is signed with
both skCV and V ’s group private key gkV , with the first
to prove V ’s holdership of the coin and the second to help
ensure the fairness of the system. After receiving this re-
newal request and verifying it is a valid request, the broker
records the binding of pkCU to pkCV , an incremented se-
quence number and an appropriate new expiration date. The
broker signs this binding with skB and sends V the signed
binding, which serves as a proof of renewal of the coin. The
transaction completes after V verifies the signature. Simi-

lar to the downtime transfer case, there are two flavors of
the downtime renewal protocol, depending on whether the
coin was last issued/transferred/renewed through its owner,
or was it transferred/renewed through the broker.
Sync: For U to synchronize state with the broker after

it rejoins the system, it identifies itself to the broker and
proves its claimed identity through a challenge-response
procedure. The broker then looks up the bindings for the
coins whose owner is U , which it has been maintaining for
U during U ’s downtime, signs them with its private key
skB , and sends it to U . After verifying the signed bindings,
U updates its coin binding list accordingly.
In summary, coin ownership is still exposed as in PPay,

but coin holdership is hidden4. Peers only use their pri-
vate keys to sign messages when they play the role of coin
owners, e.g., when they issue coins or handle coin trans-
fers/renewals. When peers act as coin holders, e.g., when
they transfer or deposit coins, they use two keys to sign
their messages. The first is the coin private key that proves
the peer’s holdership of the coin and the other is the peer’s
group private key. Neither signature reveals the peer’s iden-
titiy during normal operations and the group signature al-
lows the identity to be recovered by the judge in exception
cases, e.g., in order to identify culprits when fraud is de-
tected.

4.3 System Properties

In this section, we analyze the properties of WhoPay to
evaluate how well our design goals outlined in Section 2
have been met.
Security. WhoPay can protect against any attack on coin

value that PPay can. As described earlier, WhoPay inherits
its basic architecture from PPay, and extends it by replacing
coin serial numbers with public/private key pairs and using
group signatures to provide fairness. Thus, for an instance
of a PPay system, it is trivial to construct a parallel instance
of a WhoPay system by generating group keys for the ap-
propriate entities and public encryption keys for all coins in
the system. If an adversary could cheat the broker by cre-
ating coins in such a WhoPay system, he would be able to
do so in a PPay system as well, since he could simply re-
move the generated encryption keys and replace them with
an appropriate serial number. If an adversary could cheat
a user by invalidating his coins, those coins would also be
invalidated in a corresponding PPay system.
Furthermore, the security for coin holders is made

stronger by the use of public key encryption. Since any
transfer of a coin requires a signature by the private key of
the coin holder which is checked by the coin owner, no ad-
versary can force a holder to relinquish a coin online with-
out colluding with the coin owner under the strong RSA

4In section 5, we will show how to anonymize coin ownership as well.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

assumption. Even if an adversary includes collusion with
the owner, a coin holder can challenge this transaction af-
ter the fact, and the adversary will not be able to produce a
valid signature authorizing the transaction, and so the coin
owner can be appropriately punished for allowing the illegal
transaction.
Since WhoPay also aims to protect anonymity, and the

base PPay system allows some attacks by users which are
detectable, but not preventable in realtime, it may be of con-
cern that criminal use could go unpunished. However, since
theWhoPay system also has the fairness property, any crime
that is detected can be appropriately punished after revoking
anonymity.
Anonymity. WhoPay prevents a coalition of dishonest

entities from proving the identity of a coin holder at any
point after it has been issued (thus a user who wishes to
remain anonymous would be wise to obtain coins via issue,
or issue coins they purchase to themselves), unless those
entities include a corrupt judge.
Upon initial purchase, the coin holder and owner are

identical. Since coin holders are known to the broker, there
is no anonymity. Let us assume the coin is then issued to an
honest user u, and there exists another honest user v. Were
an adversary to include collusion among all users besides u
and v, and the broker, it still would only have access to the
public key chosen by u for the coin, and the private group
key signature of u. The public key is randomly chosen, and
hence is indistinguishable from a random choice by v. From
the properties of group signatures, a group signature by u
is computationally indistinguishable from a group signature
by v, since the adversary does not have access to the judge’s
private key. Similar information is made available to out-
side parties during issue, deposit, and renewal, and thus by
similar construction no possible transactions after the initial
purchase will allow any but the coin holder to know his own
identity with certainty.
Note that so far we have been talking about anonymity in

terms of application level identities such as those encoded
in public key certificates. In many situations network level
identities (e.g., IP addresses) can convey a lot of informa-
tion and are hence worth hiding as well. There have been
many studies in this area, most of which, such as Onion
Routing [18] and Tarzan [9], involve hiding end points IP
addresses by using third party proxies. In this paper, we
will assume such mechanisms will be adopted whenever
network level anonymity is desired.
Fairness. Recall that fairness means the broker and the

judge, working together, can reveal the identities of all par-
ties involved in a particular transaction without learning any
information about other transactions. Transactions signed
with (non-group) private keys expose signer identities and
are automatically fair. For those signed with group private
keys, the broker sends the transactions of interest to the

judge, who recovers the identities of the signers of these
transactions and sends them back. Note that no informa-
tion about other transactions is learned in this process. Thus
WhoPay is fair.
Transferability. Recall that transferability means the re-

cipient of a coin can use the same coin to pay another user
without identifying himself to the broker. In WhoPay, when
the coin owner is online, broker is not involved in coin
transfers and hence does not learn the identity of the payer.
In fact, even the coin owner does not learn the identity of
the payer, due to the anonymity property mentioned above.
When transferring an offline coin via the broker, the payer
also remains anonymous throughout the transaction. Thus
WhoPay supports transferability.
Scalability. During the lifetime of a WhoPay coin, there

is one purchase, one issue and one deposit, but there could
be an arbitrary number of transfers and renewals. Thus we
expect transfers and renewals to dominate the system load.
Transfer and renewal load is distributed across peers. In
general, the more coins a peer issues, the more transfers
and renewals he needs to handle. This is desirable, as we
expect more active peers to do more work. The broker is
only involved in coin purchases, deposits, synchronizations
and downtime transfers/renewals. The load generated by
the last three items depends on the availability of peers, but
we expect the majority of transaction load is handled by the
peers rather than by the broker and the broker load increases
sublinearly as the number of peers (or the total system load)
increases. We will run simulations to study scalability in
detail in Section 6.

5 Extensions

5.1 Real-time Double Spending Detection

By making sure all fraud will eventually be detected and
punished, WhoPay as described so far already provides a
level of security as good as PPay. One might be concerned
that detecting fraud until coin deposit time may be too late
and much damage could have been done by that time. To
address this issue, WhoPay also provides real-time dou-
ble spending detection by providing a publically viewable
coin binding list. This provides a check for coin owners.
A peer can verify that the relevant public binding has been
properly updated before accepting payment. Each peer can
also monitor public bindings for its own coins to detect ma-
licious updates.
The major challenge is how to implement this public

coin binding list. Publishing and serving all the bindings
in a central trusted server would defeat the purpose of a dis-
tributed system. Also, giving any one peer too much control
over where the bindings are published compromises secu-
rity. We propose to publish the coin bindings in a trusted,

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

access-controlled distributed hash table (DHT) infrastruc-
ture. Like hash tables, distributed hash tables provide a
put/get interface for storing/retrieving values under given
keys and are distributed across a network. To do so, DHTs
use a routing algorithm that ensures that a query under a
given key is always routed toward the same host in the net-
work. CAN [16], Chord [24], Pastry [21] and Tapestry [11]
are early examples of DHT.
Naturally, only the owner of a coin should be allowed

to write to the coin’s binding, while anyone can read the
binding. Recall that the coin bindings are keyed by pub-
lic keys, such as pkCU . The DHT should be designed in
such a way that only users who know skCU can write to
the id pkCU (by providing the right signature, which can be
published along with the binding to back it up), but any-
one can read the id pkCU . This way, any user can verify
the binding but only the owner of the coin can modify this
binding. To allow the broker to take over during downtime,
the broker should also be allowed to write to any id. By al-
lowing the broker to update the bindings in the public list,
real-time double spending detection will continue working
during the owner’s downtime. To monitor this DHT-based
public binding list, peers can either poll the bindings of in-
terest periodically or use a register/notify mechanism such
as Bayeux [27], Scribe [4, 5], or CAN-mc [17].
We understand that there is a huge amount of trust placed

in this DHT infrastructure for its access control and regis-
ter/notify service. To address this issue, we can either as-
sume this infrastructure is provided as a service by a trusted
entity (e.g., AT&T), or in the case that this infrastructure
consists of arbitrary members and lacks administrative con-
trol, introduce mechanisms to detect and remove misbehav-
ing nodes. Either way, further study is needed.

5.2 Issuer Anonymity

As pointed out in Section 4, the identity of the payer is
exposed during coin issues. We identify three approaches
to this issue. First is for users to adapt their spending habits
around this. Peers can issue coins to pay for less sensitive
items or services. When anonymity matters, peers should
choose to transfer instead of issue coins. As long as peers
have enough coins to transfer, this should not be a major
concern.
Secondly, we can introduce coin shops into the system.

Coin shops purchase coins from the broker, and peers pur-
chase coins, using the issue procedure, from the coin shops.
The only transactions a coin shop performs is to purchase
coins from the broker, to issue coins to peers, and to man-
age (i.e., handle the transfers and renewals of) the coins it
has issued. Coin shops do not care about anonymity; they
are in this business for profit, e.g., by charging a small fee
for each coin issued. Peers do not own, and hence never

issue coins. Peers spend coins only using the transfer pro-
cedure, which is anonymous.
The third approach is more complicated. The lack of

issuer anonymity stems from the encoding of coin owner
identity in coins. So, we propose to remove this informa-
tion so that a coin owner cannot be identified given a coin.
Because we represent coins as public keys, a peer can show
its ownership of a coin by proving its knowledge of the pri-
vate key, so it is not necessary to explicitly state the owner.
Thus, a coin now has the initial form of

C = {pkCU }skB

instead of C = {U, pkCU}skB , for example. Once issued,
the coin becomes:

Coin = {C, pkCH , seq, exp date}skU

where only C has a different format now, but everything
else stays the same as before.
The explicit coin owner information encoded in coins

was originally used in three places. First, when peers trans-
fer coins, the payer needs to contact the coin owner to re-
quest the transfer. Second, when peers perform synchro-
nization with the broker, the broker needs to map coins to
owners in order to determine which coins’ state to send to
peers. Third, when certain fraud (e.g., double issuing) is
detected, coin owners should be held responsible. By re-
moving coin owner information from coins, we break these
three things. Now we will present solutions to these prob-
lems such that WhoPay can still operate properly.
Our solution to the first problem is to use an anonymous

indirection mechanism like the Internet Indirection Infras-
tructure, or i3 [23]. i3 is an overlay network consisting of
i3 servers that store triggers and forward messages. Each
coin now includes a handle and peers send messages to this
handle when they want to contact the coin’s owner. That is,
coins now have the initial form of C = {hCU , pkCU}skB ,
where hCU is the handle of the coin. The coin owner regis-
ters a trigger on this handle so that all messages sent to this
handle will be forwarded. These handles act as pseudonyms
to obscure the identity of the coin owner. Note with the
use of this indirection mechanism, the issue protocol and
the transfer protocol look exactly the same from the payee’s
point of view, and thus the payee cannot tell whether or not
the payer is the coin owner.
A simple, but inefficient solution to the second problem

would be for the peer tell the broker which coins it owns,
which could be a long list. Moreover, to ensure the secure
and correct functioning of the system, the broker must en-
gage in a large number of proofs of coin ownership, which
are expensive both in communication and computing. A
better alternative, inspired by the observation that synchro-
nization is needed if and only if the public binding for a

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

coin and the local binding of the coin owner are different,
is to use lazy synchronization. Instead of synchronizing
everything immediately after rejoining the system (which
we call proactive synchronization), the peer waits until it
is absolutely necessary, i.e., when a transfer or renewal re-
quest is received. Upon receiving such a request, the coin
owner checks the relevant binding in the public coin bind-
ing list and updates its local binding if it is outdated (we
will refer to this operation as simply a check). This way, the
involvement of the broker during synchronization becomes
optional
The last problem is one of fairness. Thus, we simply ex-

tend the use of group signatures which provide fairness else-
where in the system to the issue messages as well. Group
signatures allow the issuers to remain anonymous under
normal circumstances, while making sure that they will get
caught and punished if they cheat.

6 Simulation

6.1 Simulation Setup

We have run simulations to measure load distribution,
especially as load grows. In order to evaluate different
models of use, we used three user behavior policies in
our simulation. Each policy describes a different order
of preferences for payment methods, reflecting differing
biases towards either broker load or user protection. We
cover the two policies which reflected the extremes and had
more interesting results:

Policy I Policy III
Transfer online coin Transfer online coin
Transfer offline coin Issue existing coin
Issue existing coin Purchase and issue
Purchase and issue Deposit, purchase, issue

In policy I, each peer tries to get rid of coins received
from other peers as quickly as possible. The motivation be-
hind this might be fear of fraud. Policy III simulates the best
case in terms of broker load: each peer tries to avoid deal-
ing with the broker as much as possible. These two policies
are also different in the way they deal with offline coins.
Policy I chooses to transfer offline coins through the bro-
ker, and the motivation for doing so might be that each peer
wants to minimize the number of coins it needs to manage.
In policy III, peers deposit offline coins, and purchase new
coins to issue. We suspect that doing this effectively moves
the ownership of the coins from an offline peer to an online
peer, and may reduce the load on the broker in the long run.
For these reasons, we call policy I the user-centric policy,
policy III the broker-centric policy.

Our simulations study load distribution with different
peer availability, different spending policies, lazy synchro-
nization vs. proactive synchronization, and different num-
bers of peers. To study the first three, we use the follow-
ing setup, which we refer to as Setup A. There are a total
of 1000 peers. Peers join and leave the system: session
lengths follow exponential distribution with mean μ for on-
line transactions and ν for offline. Availability of peers can
be roughly indicated by the value α = μ/(μ+ν). To model
different peer availability, we run three sets of simulations,
with ν set to 1, 2, or 4 hours. We call these three sets of
simulations short downtime simulation, median downtime
simulation, and long downtime simulation, respectively. In
each of these simulations, we further vary μ from 15 min-
utes to 32 hours. For each peer, candidate payment events
arrive as an independent Poisson process with rate 1 pay-
ment per 5 minutes, with the payee selected randomly. A
candidate payment event will result in an actual payment
event if and only if the randomly selected payee is online at
the time, therefore the actual payment events (for each peer)
form an independent Poisson process with rate α payments
per 5 minutes. We use a renewal period of 3 days, and each
run lasts for 10 days.
To gain insights into how the system scales with increas-

ing number of peers, we run another set of simulations,
which we refer to as Setup B. In these simulations, we vary
the size of the system from 100 peers up to 1000 peers. We
fix the mean online and offline session lengths to 2hrs, i.e.
μ = ν = 2 hrs, simulating a 50% peer availability. The rest
of the configuration stays the same. The setups are summa-
rized in table 1.
Following are the simulation results. Due to space lim-

itation, we show only the results for the median downtime
simulation (results from short and long downtime simula-
tions are similar) with lazy synchronization.

6.2 Simulation Results

Load distribution. The WhoPay system is built from
the following coarse-grained operations: coin purchases,
issues, transfers, deposits, renewals, downtime transfers,
downtime renewals, synchronizations, checks, and lazy
synchronizations. Here we only analyze load distribution in
terms of these operations; another paper gives our estimates
of the (CPU and communication) costs of these operations
and analyzes the aggregate load distribution.
Under policy I with proactive synchronization, the bro-

ker needs to handle purchases, downtime transfers, down-
time renewals, and synchronizations. Figure 2 shows the
broker load in terms of these operations with lazy syn-
chronization. As peer availability increases, greater activity
leads to increased payment events. However, fewer transac-
tions involve offline peers and need to go through the broker.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Table 1. Simulation Setup
Setup Policy Sync μ ν Number of peers
A I, II.a, II.b, III proactive, lazy 15 mins - 32 hrs 1 hr, 2 hrs, 4 hrs 1000
B I, II.a, II.b, III proactive, lazy 2 hrs 2 hrs 100 - 1000

5 10 15 20 25 30
0

2

4

6

8

10

12
x 10

4

Mean Session Length (hrs)

N
um

be
r o

f O
pe

ra
tio

ns

purchases
downtime transfers
downtime renewals

Figure 2. Broker Load: Policy I + Lazy Sync

The trend of broker load thus reflects the combined effect of
these two competing forces. For purchases, the first force
dominates since the number of purchases increases as peer
availability increases. For downtime transfers and down-
time renewals, the first force dominates when peer avail-
ability is low while the second dominates when it is high,
resulting in a growing, then decaying curve.
Unsurprisingly, peer load shows an inverse relatioship to

broker load: average peer load rises as peer availability in-
creases (see Figures 3), for the same reason that broker load
drops. One striking point though, is that under all configura-
tions, transfers dominate peer load. Both the broker-centric
policy and lazy synchronization cut down broker load sig-
nificantly. In summary, as peer availability increases, broker
load decreases and peer load increases; transfer dominates
peer load and transfer-via-owner is the dominant payment
type.

7 Related Work

We got the idea of using public keys to represent coins
from the Burk-Pfitzmann anonymous transfer system [2].
The Vo-Hohenberger scheme [25] adds fairness to Burk-
Pfitzmann with the use of group signatures. Both are on-
line transfer systems, as is WhoPay; but while WhoPay dis-
tributes transfer load across peers, each transfer in Burk-
Pfitzmann and Vo-Hohenberger needs to go through a cen-
tral entity.
An alternative to these online transfer systems, quite nat-

urally, is offline transfer systems. For example, peers can

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

Mean Session Length (hrs)

N
um

be
r o

f O
pe

ra
tio

ns

purchases
issues
transfers
renewals
downtime transfers
downtime renewals
checks
syncs

Figure 3. Average Peer Load: Policy I + Lazy Sync

transfer coins by using layers: each time a coin is trans-
ferred, the current holder of the coin simply adds another
layer of signature to the coin, which serves as a proof
of relinquishment. Group signatures can be used to pro-
vide fairness without compromising anonymity. No third
party is involved in the transfer and thus the scheme is ex-
tremely scalable. This scheme suffers two major problems
though. First, coins grow in size after each transfer. Sec-
ond, double spending is easier to commit and harder to de-
fend than in online transfer systems. It has no real-time
double spending detection. Anyone can double spend in
this scheme, while in WhoPay only coin owners can dou-
ble spend. Nonetheless, layered coins can be a lightweight
alternative to transfer-via-broker when coin owners are of-
fline. To alleviate the size and security problems mentioned
above, a maximum number of layers can be imposed.
Micropayment schemes are designed to handle payments

of small amount, e.g., less than $5. These schemes must be
lightweight, otherwise the cost will outweigh the value of
the payment. Their basic approach is to aggregate many
small micropayments into a few bigger payments. Early ex-
amples include PayWord [20] and Electronic Lottery Tick-
ets [19], both of which use secure hash chains, albeit in
different ways. These algorithms, however, only allow ag-
gregation by an individual merchant and thus are limited
by the frequency of a given consumer’s purchases with that
merchant. More recently, schemes have been designed to
allow aggregation across multiple consumers and multiple
merchants. These schemes generally involve a third party
payment service provider that sits between consumers and

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

merchants and performs the aggregation for the merchants.
Some of these schemes, including BitPass [1], Firstgate [8]
and Paystone [14], require pre-enrollment or pre-deposit of
funds with the payment service provider, while others, in-
cluding PepperCoin [15], don’t.
While WhoPay is not specifically designed as a micro-

payment scheme, it can certainly be extended to support
micropayment. For example, we can use a scheme such as
PayWord to first aggregate small micropayments into bigger
payments and carry out the bigger payments usingWhoPay.
That is, each pair of users maintains a soft credit window
between themselves and only makes payments when this
window reaches a threshold value.

8 Conclusions

An electronic payment system ideally should provide se-
curity, anonymity, fairness, transferability and scalability.
Existing payment schemes often lack either anonymity or
scalability. In this paper we proposed WhoPay, a peer-to-
peer payment system that provides all the above properties.
For anonymity, we represent coins with public keys; for
scalability, we distribute coin transfer load across all peers,
rather than rely on a central entity such as the broker. This
basic version of WhoPay is as secure and scalable as exist-
ing peer-to-peer payment schemes such as PPay, while pro-
viding a much higher level of user anonymity. We also in-
troduced the idea of real-time double spending detection by
making use of distributed hash tables (DHT), which further
improves the security level of WhoPay. Through simula-
tions, we have shown that WhoPay should scale well under
typical operating conditions.
A trusted DHT infrastructure that supports access con-

trol and a register/notification mechanism is essential to
WhoPay’s real-time double spending detection mechanism.
More work in this area is needed.

References

[1] Bitpass. http://www.bitpass.com.
[2] H. Burk and A. Pfitzmann. Digital payment systems en-

abling security and unobservability. Computers and Secu-
rity, 8:399–416, 1989.

[3] J. Camenisch, J. Piveteau, and M. Stadler. An efficient fair
payment system. In Third ACM Conference on Computer
and Communication Security, pages 88–94, 1996.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
Scribe: A large-scale and decentralized application-level
multicast infrastructure. IEEE Journal on Selected Areas in
Communications (JSAC) (Special issue on Network Support
for Multicast Communications), 2002.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Row-
stron. Scalable application-level anycast for highly dynamic
groups. In Proceedings of NGC 2003, September 2003.

[6] D. Chaum. Blind signature system. Advances in Cryptology,
1983.

[7] D. Chaum and E. V. Heyst. Group signatures. Lecture Notes
in Computer Science, 547:257–265, 1991.

[8] Firstgate. http://www.firstgate.com.
[9] M. Freedman, E. Sit, J. Cates, and R. Morris. Tarzan: A

peer-to-peer anonymizing network layer. In Proceedings
for the 1st International Workshop on Peer-to-Peer Systems,
2002.

[10] D. Geer. E-micropayments sweat the small stuff. Computer,
37(8), August 2004.

[11] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao. Dis-
tributed object location in a dynamic network. In Proceed-
ings of the Fourteenth ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA’02), August 2002.

[12] Kazaa. http://www.kazaa.com.
[13] Paypal. http://www.paypal.com.
[14] Paystone. http://www.paystone.com.
[15] Peppercoin. http://www.peppercoin.com.
[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content-addressable network. In Pro-
ceedings of ACM SIGCOMM, September 2001.

[17] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-level multicast using content-addressable net-
works. In Proceedings of NGC 2001, 2001.

[18] M. Reed, P. Syverson, and D. Goldschlag. Anonymous con-
nections and onion routing. IEEE Journal on Selected Areas
in Communication Special Issue on Copyright and Privacy
Protection, 1998.

[19] R. Rivest. Electronic lottery tickets as micropayments. In
Proceedings of Financial Cryptography Conference, 1997.

[20] R. Rivest and A. Shamir. Payword and micromint: Two
simple micropayment schemes. In Proceedings of 1996 In-
ternational Workshop on Security Protocols, 1996.

[21] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), pages 329–350, Novem-
ber 2001.

[22] A. Shamir. How to share a secret. Communications of the
ACM, 22:612–613, 1979.

[23] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet indirection infrastructure. In Proceedings of ACM
SIGCOMM, August 2002.

[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of ACM SIG-
COMM, September 2001.

[25] B. Vo and S. Hohenberger. A fair payment system with on-
line anonymous transfer. Masters thesis, to appear, Decem-
ber 2006.

[26] B. Yang and H. Garcia-Molina. Ppay: Micropayments for
peer-to-peer systems. In Proceedings of the 10th ACM Con-
ference on Computer and Communications Security (CCS),
2003.

[27] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatow-
icz. Bayeux: An architecture for scalable and fault-tolerant
wide-area data dissemination. In The 11th International
Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV), 2001.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

