
PPay: Micropayments for Peer-to-Peer Systems

Beverly Yang Hector Garcia-Molina
{byang, hector}@db.stanford.edu

Stanford University

ABSTRACT
Emerging economic P2P applications share the common need for

an efficient, secure payment mechanism. In this paper, we present

PPay, a micropayment system that exploits unique characteristics

of P2P systems to maximize efficiency while maintaining security

properties. We show how the basic PPay protocol far outperforms

existing micropayment schemes, while guaranteeing that all coin

fraud is detectable, traceable and unprofitable. We also present

and analyze several extensions to PPay that further improve effi-

ciency.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications

Keywords
Economics, Security, Design, Performance

General Terms
peer-to-peer, micropayments

1. INTRODUCTION
In recent years, peer-to-peer (P2P) applications have emerged

as a popular way to share huge amounts of data, compute
cycles, knowledge/expertise, and other resources. For ex-
ample, as of April 30 2003, the KaZaA [9] multimedia file
sharing application reported over 4.5 million users sharing
a total of 7 petabytes of data. The reason P2P systems
can achieve such scale is their ability to pool together and
harness large amounts of resources at the “edge” of the net-
work (i.e., at the peers), rather than relying on expensive
centralized resources.

Recently, the “killer” application of free multimedia file
sharing has come under legal fire from the recording indus-
try. As a result, new P2P applications are emerging, such as
pay-per-transfer file sharing systems, Grid-style computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’03, October 27–31, 2003, Was hington, DC, U SA.
Copyright 2003 ACM 1-58113-738-9/03/0010 ...$5.00.

systems, web service catalogs/service discovery, data stor-
age/archival systems, etc. The goal of these new applica-
tions are for the rightful owners of goods or services to be
compensated; therefore they all share a common need: an ef-
ficient and secure micropayment mechanism, by which peers
can purchase services from one another.

The problem with most existing micropayment schemes is
the heavy load on the trusted, centralized broker. A broker
is required to handle accounts, distribute and cash coins,
provide security (such as double-spending detection), etc.
Although payments need not be online, eventually the bro-
ker must take some action for every transaction; as a result,
broker load is always O(n) in the number of transactions.
Brokers therefore present a scalability and performance bot-
tleneck for any system using these micropayment schemes.

However, P2P applications have two main characteristics
that we can exploit to address the above problem:
• First, peers serve as both vendors, who sell goods, and

buyers, who purchase them. As a result, a transferable
coin can be used in many transactions before the broker
must be involved in cashing it.

• Second, and more importantly, are the massive resources
available at the peers themselves. Like other P2P appli-
cations, if we can tap into this pool of resources and shed
the broker’s load onto the peers, we can build a micro-
payment scheme with much better scalability and perfor-
mance properties than existing ones.

The main challenge in exploiting the above two points is
to ensure that the security properties of the scheme are not
compromised. For example, transferable coins delay the de-
tection of coin fraud, and we now want operations normally
done by the trusted broker to be performed by untrusted
peers.

In this paper, we present PPay1, a micropayment scheme
that addresses the dual problem of improving performance
while maintaining security. PPay only requires broker in-
volvement when peers open or close accounts, for arbitra-
tion, and in limited cases, to perform services on behalf of
offline peers. We show that under realistic application sce-
narios, PPay significantly outperforms existing schemes in
terms of broker load. At the same time, however, PPay
guarantees that all fraud is detectable and traceable. Our
contributions are as follows:
• We present (Section 3) the basic PPay protocol for float-

ing, self-managed coins.
• We show (Section 4) how the necessary security properties

hold.

1“PPay” is short for PeerPay

300

• We describe (Section 5) several extensions to the basic
protocol that greatly improve system performance.

• We present a detailed performance analysis (Section 6),
using simulations to (1) show PPay outperforms existing
micropayment schemes in our target application scenario
(Section 7.1), (2) determine the special cases in which
PPay is not better, and (3) show how to tune the per-
formance of PPay by setting the appropriate parameter
values for our extensions (Section 7.2).

We believe that our performance analysis is unique in this
field, where most schemes are proposed and only qualita-
tively analyzed.

Preliminaries. One very important point to keep in mind
is that micropayments are payments of a small amount.
Therefore, (1) utmost security is not required, and (2) the
payment mechanism must be lightweight, otherwise the cost
of the scheme will outweigh the value of the payment. A
real-world analogy to vending machines is illustrative. Be-
cause the goods are low-cost, it is not profitable to hire an
employee to attend the machine. As a consequence, candy
bars may be stolen, or clients may receive low-quality, stale
candy. Likewise, most micropayment schemes (all schemes
known to the authors) do not guarantee fair exchange of
goods and payment. An escrow service (e.g., [8]) would make
transactions more expensive than the value of the goods.
Therefore, the main disincentive for cheating is that a bad
user will be shunned, and will not be able to carry on busi-
ness in the future.

Furthermore, because payments are offline, coin fraud (e.g.,
using a counterfeit coin in a vending machine) may not
be discovered until after the fact. However, offline pay-
ments are preferred from a practical standpoint because they
have lower latency, communication costs and computational
costs. Naturally, large-scale fraud needs to be detected and
punished (discussed in Section 4). On the whole, however,
effective micropayment systems simply need “good enough”
security where fraud is detectable, traceable and unprof-
itable, while maintaining high efficiency.

Notation. The public key of a node N is denoted PKN ,
and the secret key SKN . A message M signed by some key
K is denoted as {M}K (e.g., {M}SKN).

2. RELATED WORK
Many micropayment schemes have been proposed in the

past, including NetBill [13], DigiCash [4], Millicent [5], and
the scheme proposed by Rivest et. al. [14, 11]. Each of
the above schemes require O(n) broker load, where n is the
total number of payments made. In fact, in DigiCash and
NetBill, every transaction requires an online broker involve-
ment, which as we noted earlier, has worse performance but
better security.

Payword hash chains [14] and electronic lottery tickets [11]
greatly reduce the “hidden constant” of this O(n) cost in the
work of Rivest et. al., but we note that both these techniques
may also be applied directly to our scheme to reduce peer
and broker load (see Sections 5.4 and 7.2.3).

The Millicent scheme also has a very low “hidden con-
stant,” because the broker does not need to perform any
signature generations or verifications. As a result of this low
security, however, there is no way of proving fraud. Instead,
the broker will eject any vendor for which it receives many
complaints. The money spent by the broker to pre-purchase
that vendor’s scrip will be lost. Furthermore, given the pos-

sibility of malicious peers “framing” a particular user, we
prefer a system with stronger security properties.

At first glance, transferable coins [1, 3] seem to exploit
the first characteristic of P2P systems we mentioned in the
previous section. The basic idea behind transferable coins
is similar to layered coins discussed in Section 5.2. When
a user uses a coin for payment, he adds some information
to the coin, such as his (possibly disguised/hidden) identity.
Most transferable coin schemes have been developed in a
macropayment context, and are very heavyweight in order
to provide additional security properties such as anonymity
and untraceability. In general, anonymity and untraceability
are not used for micropayments because the cost outweighs
the benefits. However, even a lightweight scheme employing
the basic idea of transferable coins has the following prop-
erties: (1) the coin grows in size as it is transferred, and (2)
double-spending detection is significantly delayed. For the
above reasons, in practice, transferable coins must be cashed
after they have been used a certain number of times. Even
with transferable coins, then, broker load will still be O(n)
in the number of transactions. Furthermore, even if coins
could be transferred indefinitely, eventually when the coins
are cashed, the broker will receive O(n) amount of data, be-
cause each coin’s size is O(n′) in the number of times it was
transferred.

Elements of the PPay protocol are optimistic, in that
transactions between peers do not involve the broker unless
an exception occurs (e.g., a peer dies). Optimistic protocols
for fair exchange have been studied in the past (e.g., [2]).
Unlike fair exchange, however, a micropayment protocol will
always require some broker involvement in non-exception
cases (e.g., when the final payment is made); hence, the
focus of this work is to minimize broker involvement in non-
exception cases.

Finally, MojoNation [12] developed a micropayment sys-
tem for P2P applications; however, the company has gone
out of business, and left no documentation of their scheme.
From informal interactions with others knowledgeable about
MojoNation, it appears that their system also had broker
load that was O(n) in the number of transactions.

In Section 7.1, we provide a performance comparison be-
tween our scheme and the micropayment scheme of [11, 14]
in conjunction with transferable coins. For a survey over
these and other schemes, please refer to [10].

3. PPAY PROTOCOL
In PPay, we present the concept of floating, self-managed

currency to greatly reduce broker involvement. Floating
currency allows digital currency to “float” from one node
to another without the involvement of a centralized broker,
which is only useful when peers act as both buyers and ven-
dors. However, unlike traditional transferable cash, coins in
PPay do not grow in size as they are transferred. We say
the currency is “self-managed” because all security related
to a coin, except for when the coin is first created or cashed,
is managed by the users who “own” the coins. In this way,
we harness the resources available at individual peers.

Basic Implementation. Self-managed, floating currency
is implemented as follows. A user U purchases digital coins
from the broker B. A raw coin from the broker has the
following form:

C = {U, sn}SKB (1)

where sn is the serial number of a coin that uniquely iden-
tifies it. User U is now the owner of coin C.

301

Now, when U wishes to buy a service from another user
V , it will send V the assigned coin:

AUV = {V, seq1, C}SKU (2)

where seq1 represents the sequence number of the assign-
ment. Each assignment of a coin must have a sequence
number that is greater than the sequence number of the
previous assignment, if a previous assignment exists (that
is, if this assignment is not the first of this coin). V is now
the holder of the coin. At any time, a holder may “cash” its
assigned coins (or any unused raw coins) at the broker for a
flat fee (the fee is meant to deter users from constantly cash-
ing coins, which reduces the benefits of floating currency).

Instead of cashing the assigned coin, V may instead pay
another node X using the same coin. In the basic case, V
sends the following reassignment request to owner U :

RUV X = {X, AUV }SKV (3)

When U receives RUV X , it keeps a record of the reassign-
ment request in order to later prove that V “relinquished”
the that particular assignment of the coin, in the case of a
dispute.

After receiving and processing the reassignment request,
U then sends to V and X the new assignment:

AUX = {X, seq2, C}SKU (4)

Nodes V and X are responsible for verifying that seq2 >
seq1. After the new assignment has been issued, the old as-
signment, AUV , is no longer valid. In Section 5.2 we discuss
the option of layered coins, where V reassigns a coin to X
without going through owner U . Note that both V and X
receive the new assignment. That way, if for some reason X
claims to have not received the coin, V can send its copy to
X. If neither V nor X receive the coin, then the scenario is
identical to the one in which U is simply down.

Downtime Protocol. Peers must be online to manage
their coins. Say a node V receives a coin owned by U , and
then attempts to spend it at node X. If U is unavailable
(e.g., due to network partitions or natural downtime of a
computer), or if U is attempting an attack, then it will not
reassign the coin.

If the owner of a coin is not online (which the holder
should determine via a ping before sending the reassign-
ment request), the holder should attempt to make the pay-
ment via a coin owned by a different user who is online.
In the case where this option is not available, or where the
holder already sent the reassignment request but received
no response, the holder may have the coin reassigned by the
broker. Continuing our example from above, broker B will
generate the newly assigned coin:

AUX = {X, seq2, C}SKB (5)

which is identical in content to an assignment issued by
owner U . The broker will then store the reassignment re-
quest from V and send it to owner U when it comes back
online. U will be responsible for detecting any misconduct
while it was down.

In the off chance where both the broker and the owner re-
assign the coin (e.g., because the holder timed out on waiting
for a response from the owner), no damage is done. Both
assignments will have the same sequence number and be as-
signed to the same user; hence they are essentially the same
assignment. If the holder tries to reassign the coin to two dif-
ferent users, the owner can detect this misbehavior through
the two reassignment requests. Please refer to Section 4 for
a detailed security analysis of our protocol.

Broker B will charge both V and U a percentage of the
reassigned amount for this service. Both parties must be
charged in order to prevent attacks where U always pretends
to be down, or V pretends U is down. Note that this exten-
sion provides incentives for nodes to remain online, and to
minimize the involvement of the broker. It also makes any
attack by the owner unprofitable, since the owner will not
only be charged a fee, but it will also be unable to reuse the
coin for itself.

An alternative to this downtime protocol is for peers to
simply print a new coin whenever it does not hold another
coin whose owner is alive. What a peer decides to do will de-
pend on how much it is willing to manage another coin, and
on what the respective fees are (which the broker controls).
Later in Section 7.1 we present a performance analysis of
this alternative method of dealing with offline owners. Even
if this alternative method is used, however, we still need the
downtime protocol to handle the case when the owner does
not respond after the reassignment request has already been
sent.

Observations. First, the broker’s involvement is now
limited to O(m), where m is the number of coins issued.
Since each coin can be involved in thousands of payments
before being cashed, m may be orders of magnitude lower
than n, the number of payments made. Furthermore, in the
“ideal” case where all nodes own the same number of coins,
and coins are randomly selected to make payments, the cost
per node of handling coin reassignments remains constant,
regardless of the number of nodes in the system – i.e., it
scales perfectly.

Next, we observe that reassigning a coin is relatively ex-
pensive (2 signature generations, 4 signature verifications,
and 3 extra network messages). However, here we can di-
rectly use existing micropayment techniques originally in-
tended to reduce broker involvement. For example, we can
use electronic lottery tickets [11] to reduce the number of
coin reassignments by a factor of s, where in practice s can
safely be set to roughly 100. We refer readers to the citation
for details.

Third, PPay is offline with respect to the broker, meaning
that broker load is conserved. However, because payments
must (usually) be online with respect to the coin owner,
overall communication cost and latency is higher than with
true offline payments. In Section 7.1 we compare the load
of peers in PPay with other offline schemes.

Finally, we note that downtimes increase the involvement
for the broker, but to a limited degree. As downtimes in-
crease, PPay essentially degenerates into a regular brokered
scheme where broker involvement is O(n) in the number of
transactions. In Section 7.1 we show how our scheme main-
tains good performance, even in the face of many offline
peers.

4. SECURITY
As with any offline payment system, coin fraud is an im-

portant issue that must be carefully addressed. Like other
micropayment schemes, PPay does not prevent coin fraud
at the outset, but instead makes fraud unprofitable. To
achieve this goal, we need to ensure that (1) any fraud can
be detected and traced back to the misbehaving peer (Sec-
tion 4.1), and (2) proper punishments are in place (Sec-
tion 4.2). Note that although a payment scheme can be
designed to make fraud impossible (e.g., by making all pay-
ments online through the broker), such a scheme would

302

be very inefficient. Recall that the goal of micropayment
schemes is to provide an efficient payment mechanism with
“good enough” security – i.e., where fraud is unprofitable.

Throughout this discussion, we assume that the broker is
trustworthy. For a discussion on why this is a reasonable
assumption, please refer to [17].

4.1 Detection
To assure that coin owners and holders cannot commit

fraud without leaving behind proof of misconduct, the fol-
lowing invariants must hold:

1. If H is the valid holder of coin C owned by U , then U
does not have proof that H has relinquished its valid
assignment. Proof of relinquishment is in the form of a
signed reassignment request from H for coin C, for the
specific assignment in question (i.e., with the matching
sequence number).

2. The sequence number of each assigned coin is greater
than the sequence number of the preceding assignment
of the coin.

3. If H is not the valid holder of coin C, then U can
refute any assignment that H claims with proof of re-
linquishment (as defined earlier).

Note that as a consequence of invariant 3, the owner of a
coin must keep a full “audit trail” of the coin.

To show that our system can detect and trace various
attacks, we must prove the following theorem:

Theorem 1. The above three invariants hold at all times,
for all coins C.

For a full proof of the above theorem, we refer readers to
our extended report [17]. The proof covers both the default
protocol, where owners reassign their own coins, and the
downtime protocol, where owners are offline and the broker
must reassign their coins.

Attack Analysis. Given that Theorem 1 holds, it is
now a simple matter for malicious peers to be detected and
identified. Here we enumerate the most common attacks on
a micropayment scheme, and show how all instances of the
attack can be detected and traced back to the misbehaving
peer.

First, the holder of a coin may commit fraud by replicat-
ing an assigned coin and spending it twice. For example,
say owner U assigns a coin to V . User V then reassigns the
coin to X, and then tries to reassign it again to Y . Given
invariant 3, however, owner U will always be able to refute
the second reassignment of coin C. Note that if owner U
was offline when V replicated its assignment, then the sec-
ond, invalid assignment will be retroactively refuted when
U comes back online (details in [17]).

The owner of a coin may commit fraud by wrongfully
denying validity of an assignment, or by double-spending a
coin (generating two coins with the same serial number). As
an example of wrongful denial, a peer V may hold a valid
assignment of coin C owned by peer U . If V tries to reassign
C, and U claims that V ’s assignment is invalid, then V will
lose the value of that coin. By our protocol, wrongful denial
is prevented by default, because the burden falls upon the
owner to prove that a given assignment is invalid. If an
assignment is valid, by invariant 1, no such proof exists.

As an example of double-spending, an owner U may
assign a raw coin C to V , and then assign the coin to X
as well. The broker evades the double-spending attack by

recording the serial number and owner of each coin that has
been cashed, and the holder of the coin who cashed it. If
multiple coins with the same owner and serial number are
cashed, the broker will ask the owner of the coin to prove
the invalidity of one or both of the assignments. If the owner
is able to refute an assignment, then the holder of the coin
will be punished. If the owner is not able to refute either
assignment, then the owner will be punished. By invariants
1 and 3, the owner will only be punished if it double-spent
the coin.

4.2 Punishment and Risk Management
In real life, if a business can be proven to be corrupt, then

legal action can be taken. Likewise, because fraud can be
exposed with proof, then the broker will be involved in the
arbitration. In general, the broker B will require the misbe-
having party to pay for any “fake” coins, as well as a penalty
fee for misbehavior. If a node continues to misbehave, the
broker may boot the node out of the system (e.g., never al-
low the node to cash in its coins, and/or inform other users
to avoid the node).

Unfortunately, in any offline payment scheme, it is pos-
sible that when credit fraud is detected, the cheater is not
able or available to make payments. In our system users
must provide a valid credit card to the broker when they
first join the system, and the broker can charge the penalty
fees via this payment channel. However, if a user cheats,
immediately closes down his credit card account, and dis-
appears from the system, the broker can no longer charge
the penalty fees. In the worst situation, the business owning
the broker must settle with the user out-of-system, using the
personal information provided when the user first joined the
system (e.g., name, address, phone). Fortunately, we believe
this type of “cheat and run” attack can be avoided in most
or all cases given the following proper disincentives.

First, bear in mind that individual micropayments are
worth very little. Hence, if the user cheats with a small
number of coins, then the loss to the broker is negligible. To
guard against medium to large cheat amounts, the broker
may charge a deposit when the user first joins the system.
When a user permanently leaves the system, he notifies the
broker, who then recalls all coins belonging to that user.
After the coins have been recalled and the broker has de-
termined no cases of cheating, the user receives his deposit
back, and may cash any coins it is currently holding. If
the user cheats and disappears, without going through the
formal process of leaving the system, he forfeits his deposit.

It is also possible that a user cheats with an enormous
number of coins that a reasonable deposit can not cover.
However, such a scenario means that the user must pur-
chase an enormous number of low-value goods (e.g., 100000
web pages), which is not likely or realistic behavior. This
observation is in contrast to credit card fraud, where the
cheater can select from a huge range of goods that are po-
tentially very expensive. Furthermore, to select and down-
load all these goods will take quite some time. Because the
user cheated with an enormous number of coins, there is a
greatly increased chance that the user will be caught before
he finishes downloading the goods. Finally, the user will al-
ways be caught, eventually. Hence, even if the user is able to
cheat and disappear before he is caught, he will eventually
face a collection agency and bad credit as a consequence.
Given these disincentives, then, we believe that large-scale
cheating will be very rare or nonexistent.

In terms of a peer’s risk, the broker will guarantee refunds

303

to cheated peers in all cases except large-scale fraud. With
large-scale fraud, the broker will provide refunds as far as
can be covered by the bad peer’s deposit. The remainder of
the fraud amount will be covered if the broker can extract
payment from the bad peer through out-of-system means.
Individual peers must therefore manage their risk; e.g., by
not accepting too many coins from the same user, or by
periodically cashing their coins.

5. ISSUES AND EXTENSIONS
Here we consider a few issues in the scheme described,

and provide extensions that solve or mitigate the problems.
For each extension proposed, we also discuss the associated
security considerations and risks.

5.1 Limit Certificates
Printing raw coins can be expensive for the broker, given

that the broker’s load is otherwise very low. Observe that
the purpose of a raw coin is to notify other users that the
owner U has purchased this coin; hence, the coin can later be
redeemed at the broker. To achieve this same functionality,
we can instead have users print their own coins, given proof
that the broker has authorized them to do so. When a user
U first joins the network, it obtains a limit certificate from
the broker that specifies how many coins U is authorized to
print. The certificate has the following format:

L = {U, liml, limu}SKB (6)

Field liml denotes the lower bound on the serial number of
the coins that U may print, while limu denotes the upper
bound. User U will typically need to prepay the value of
limu − liml + 1 coins. U may now print his own “raw coin”
with the following format:

C′ = {sn, L}SKU (7)

where it must be the case that liml ≤ sn ≤ limu. Any raw
coin with a serial number outside of the limits set by the
certificate is not valid.

Security Considerations. Note that while user U may
print a coin with the same serial number twice, such an
action is no different from U copying and double-spending
a raw coin issued by the broker. The security properties
of self-printed coins with limit certificates is therefore no
different from the security properties of broker-printed raw
coins.

5.2 Layered Coins
Rather than requiring a node V to go through owner U to

reassign coin C to node X, V can instead reassign C itself
by directly sending X the following message:

PUV X = {X, V, seqn, AUV }SKV (8)

where seqn is greater than the sequence number of AUV .
Similarly, X can then reassign the coin to some node Y by
adding another “layer” to PUV X . Each layer of the coin
is effectively a reassignment request, and serves as proof of
relinquishment. When a node finally does go to U to have
the coin reassigned, U can obtain all necessary proofs by
“peeling” off the layers.

Layered coins are a lightweight implementation of tradi-
tional transferable cash, with no anonymity or untraceabil-
ity properties. Like transferable cash, layered coins grow in
size as they are transferred. Unlike transferable cash, how-
ever, layered coins in our scheme will eventually be peeled

at a peer, rather than the broker; therefore broker load is
significantly lower.

Security Considerations. In our extended report [17],
we show how Theorem 1 continues to hold in the presence
of layers. However, layers may still delay the discovery of
fraud. For example, say user V replicates coin C belonging
to owner U . If layers are not allowed, V will be caught as
soon as it tries to spend C the second time. With layers,
however, V can reassign coin C to two users without U ’s
knowledge. Only after both coins are peeled, can U pinpoint
V as the misbehaving party. In Section 7.2.1 we study the
tradeoff of layered coins between security and efficiency.

5.3 Coin renewal
To limit the amount of state each peer must keep (e.g.,

audit trails, payment history), we can require coins to be re-
newed during a certain time window (e.g., a 30-day window
starting at time t). After the renewal window closes, the
owner of the coin may purge the audit trail of the coin and
start the audit trail anew. Further, any payment history in-
volving an expired coin may also be purged. Any coin that
has a renewal date in the past is considered invalid. If nodes
do not renew their coins, then they forfeit the coins after the
renewal window closes. Hence, the renewal window must be
large enough such that nodes have a fair chance to renew
the coins in their possession.

Just as with reassignment, if V tries to renew a coin at
U but U is not alive, then V may have the coin renewed at
broker B, at a fee for both V and U . Alternatively, V may
simply cash the coin if it is about to expire, thereby taking
it out of circulation. The decision V makes will depend on
the respective fees charged for renewal and cashing.

Assigned coins now have the following form:

AUV = {V, ts, rb, re, C}SKU (9)

where rb and re designate the begin time and end time of
the renewal period, respectively, and ts is the current times-
tamp. When V wants to renew a coin, it sends the following
renewal request to U :

N = {AUV }SKV (10)

U will then return the assigned coin to V with a new renewal
period specified:

AUV = {V, ts, r′b, r
′
e, C}SKU (11)

Security Considerations. In our extended report [17],
we discuss what happens if owner U tampers with the re-
newal window (e.g., sets the window to a time in the past)
and how a holder V can easily guard against that attack.
We also prove that Theorem 1 continues to hold in the pres-
ence of renewals. Here, we briefly discuss how the size of the
renewal period affects the worst-case time to detect fraud.

As we mentioned in Section 4.2, we expect large-scale
fraud to be rare, and likely to be detected within a short
amount of time. However, in the worst case, fraud will not
be detected until conflicting coins (i.e., with the same serial
number) are cashed, reassigned or renewed at the broker.
There are no guarantees as to when a given coin will be
cashed or reassigned; however, the coin must be renewed
within the renewal period. Hence, the worst-case time to
detect any kind of fraud is equal to the renewal period. In
practice, we must balance the tradeoff between renewal load
and worst-case fraud detection. In Section 7.2.2, we discuss
further this tradeoff between security and performance.

304

5.4 Soft Credit Windows
In some systems, payments are not only made for large

items, such as downloads, but also for small items, such
as forwarding messages or answering queries. Such systems
use economic incentives to ensure the proper operation of
the P2P infrastructure. Because these “picopayments” may
need to be very fast and will occur very frequently, we cannot
require a signature generation and verification per payment.
Furthermore, because the value of picopayments are very
low (fraction of a micropayment), security surrounding them
can also be low.

To make payments fast, we observe that in P2P systems,
the economic relationship between nodes is often symmetric.
For example, U may provide several services to V , but later,
V will then provide services to U .2 Due to this symmetry,
payments between nodes can “cancel” each other out before
the exchange of a signed lottery ticket or coin is required.

We take advantage of the above observation by utilizing
soft credit windows.3 For each node V that U interacts with,
U must keep track of the balance MUV of “picopayments” it
owes that node. The balance begins at 0. Each time V per-
forms a service for U , MUV is increased. When U performs
a service for V , MUV is decreased. At the same time, V is
maintaining MV U . Under correct behavior, MUV = −MV U

at all times. Naturally, peers can easily behave incorrectly;
we will discuss this problem shortly. When MUV falls out
of the range (−x, x), then U must pay V , or vice versa. The
balances are then reset to 0.

We make several observation about the performance of
soft credit windows. First, if x is large enough to handle the
variance in balance, theoretically, two nodes may never need
to exchange coins, even if they provide enormous amounts of
service for each other. Second, soft credit windows require
you keep state per node you interact with, but this per-peer
state is very small. Even if each node interacted with a mil-
lion other peers in the system, total state would be on the
order of 6MB of memory (i.e., one integer and one short
per node), which is not at all significant on today’s comput-
ers. Finally, soft credit windows are very efficient, not only
because of the symmetric relationship between nodes, but
also because no signature generation/verification is needed.
Even if the relationship is totally asymmetric, we can still
utilize soft credit windows to decrease the number of signa-
ture operations required.

Security Considerations. Because soft credit windows
do not provide proof that one party is indebted to another,
choosing window size x presents a tradeoff between efficiency
and risk. As we observed earlier, large x may result in super-
linear reduction in the number of coin reassignments. How-
ever, the larger x is, the more a peer stands to lose if it is
cheated, for example, if the other peer refuses to make a
payment when the balance reaches x. Note that it is possi-
ble for to U believe the balance has exceeded the window,
but V disagrees. If this situation occurs frequently, then U
should learn to avoid V . However, if the situation occurs

2Symmetric behavior may not be seen for large items, e.g., in
download patterns. However, if payments are made for small
items such as forwarding messages or processing queries,
then relationships become much more symmetric.
3The authors have been informed that MojoNation [12] used
a similar idea, which they called bilateral accounting. How-
ever, no documentation is available to confirm or cite. Be-
yond the introduction of this idea, we also discuss risk man-
agement for this technique, as well as a performance analysis
in Section 7.2.3

infrequently (e.g., due to honest mistakes, lost messages),
then the loss of a few picopayments is a very small deal. In
Section 7.2.3 we will explore this tradeoff between efficiency
and risk as x varies, and as the number of misbehaving peers
in the system varies.

Because potential loss sustained by a peer can be high,
we need to investigate ways of bounding this loss. We now
present the NetLossCap method of managing the risk of
credit loss.

Let cij(t) denote the credit (in picopayments) peer pj owes
peer pi at time t (cij(t) = −cji(t)). Potential credit loss li(t)
of peer pi is defined as li(t) =

�
pj∈network cij(t). The max-

imum value of cij(t) is x (the size of the window), hence
maximum possible loss li(t) is x · ‖network‖. Loss is implic-
itly potential until a peer permanently leaves the system.

In the NetLossCap method, peers set a cap value v that
limits credit loss li at any point in time. If li(t) = v and
a peer pj wishes to extend its credit at pi, pi will refuse.
Instead, in order to receive service, pj will need to pay pi

a coin. In paying this coin, pj is essentially extending pi

x picopayment credits (since a coin is worth one window’s
worth of picopayments). Loss li(t) is thus decreased by x,
and pj can now receive service at pi.

Note that when pj pays pi the coin, other requirements
should not be broken. In particular, if lj(t) > v − x prior
to the coin payment, then pj cannot pay pi – otherwise
lj(t) will go over the cap value. In addition, pj cannot
pay pi if cij(t) > 0 prior to the coin payment, otherwise
cij(t) + x will fall out of the credit window. No exchange of
credit and service will occur unless pj can afford to make the
payment without unnecessarily affecting its own risk. In
Section 7.2.3, we investigate the impact of NetLossCap on
system performance and risk.

Hash Chains. An existing, popular way to make fast,
small payments are Payword hash chains [14]. For readers
not familiar with hash chains, a longer discussion of the
statements made in this section can be found in [17].

Unlike soft credit windows, hash chains present no credit
loss risk to peers, assuming broker functionality is extended
to honor partial hash chains. However, maintaining hash
chains has high state overhead. In a system with a million
peers and hash chains of length 100, over 4GB of state per
peer must be maintained. Furthermore, because hash chains
can only express an increasing amount of credit (as opposed
to both increasing and decreasing, like soft credit windows),
they can not take advantage of the symmetric relationship
between peers. If users A and B exchange an infinite but
balanced number of picopayments, the will need to exchange
an infinite number of coins, rather than zero coins. In Sec-
tion 7.2.3 we compare the performance of hash chains and
soft credit windows.

6. EXPERIMENTAL SETUP
In the previous three sections we have provided a formal

description of the PPay micropayment scheme. Now, we
wish to use simulations to answer the following important
questions: (1) Is PPay feasible in terms of broker load, peer
load, and the amount of state needed to implement our secu-
rity features? (2) How does PPay perform relative to other
schemes? What usage scenarios produce best or worst case
behavior? (3) How should we tune parameter values (such
as credit window size) for best performance?

We evaluate PPay in the context of a file-sharing sys-
tem using the GUESS protocol [7] to discover files. GUESS

305

Name Default Description
Network Size 1000 Number of peers in the network
Cache Size 100 Size of each peer’s pong cache
Query Rate 9.26 The expected number of queries per

·10−3 user per second
Lifespan 1 Multiplier used to extend the

Multiplier period of time peers remain online
Downtime 1 Multiplier used to extend the

Multiplier period of time peers remain offline
Credit Window 10 Size of a soft credit window or

Size hash chain
Credit Window Payword The type of credit window used

Type (Payword, soft credit windows)
Max Layers 2 Maximum number of layers allowed

on a coin before it must be peeled
Renewal Wait 30 days Elapsed time between audit trail

purges for a given coin
Scheme PPay The micropayment scheme used

(PPay, PPay*, or RM)
Net Loss Cap ∞ Maximum allowed net loss per peer

due to soft credit windows

Table 1: System and Micropayment parameters

is a new protocol from the Gnutella Development Forum
(GDF) aimed at addressing performance and security issues
in Gnutella [6] – the largest open P2P system in operation
today. In brief, under the GUESS protocol each peer keeps
a “pong cache”, which is a list of IP addresses of other peers
in the system. When a peer has a query, it “probes” the
peers in its pong cache with the query message, one by one,
until a match is found. There are many policies by which
peers can order their probes; for simplicity, we assume that
the order is random.

One problem with the current GUESS protocol is that it
does not provide the proper incentives for peers to cooperate
– peers can easily cheat the system by sending out its probes
all at once. This behavior incurs a much higher load on other
peers, while drastically improving the response time of the
search for the querying peer. If all peers act according to
their best interests, the system might fail as if under a denial
of service (DoS) attack. In order for GUESS to work, there
must be a way to give peers an incentive to adhere to the
protocol. One straightforward proposal is to have peers pay
for each probe. Peers will then be motivated to probe as few
peers as possible to answer their queries. In our evaluation,
we use the PPay micropayment system to implement this
incentive mechanism. In particular, peers will make one
picopayment per probe. Coin payments are then made as
credit windows are filled.

6.1 Metrics
Performance of a micropayment scheme is measured pri-

marily by load. Load is defined as the amount of work
an entity must do per unit time. Load is measured along
three resource types: incoming bandwidth, outgoing band-
width, and processing cost. Bandwidth is measured in bits
per second (bps). Processing cost is conceptually measured
in cycles per second (Hz), although we actually measure
costs in coarse units before converting them to approximate
cycles (described further below). We look at load from two
perspectives: the broker, and the peers. Recall that our
goal is not overall efficiency, but broker efficiency. At the
same time, however, we want to ensure that peer loads are
reasonable.

In addition to load, we also look at state, and credit loss.
State is simply the number of “proofs” (i.e., reassignments

or renewals) that an entity must store. Because the amount
of state varies over time, we will be measuring the average
state over time.

6.2 Parameters
We will be comparing the performance of different config-

urations of PPay, where a configuration is defined by a set
of system and micropayment parameters, listed in Table 1.
Most system parameters will remain unchanged in our ex-
periments, as they do not qualitatively affect the results. We
will describe these and other parameters in further detail as
they appear later in the section. In our experiments, unless
otherwise specified, the default parameter values are used.

Note that Network Size = 1000 is a modest number of
peers, compared to the scale of an actual P2P application.
We had to limit network size because of the length of our
simulations. However, most results shown in Section 7 should
be a good qualitative representation of any network size, be-
cause PPay is scalable. For peer loads, although application-
level purchases grows with the number of peers in the sys-
tem, so does the number of peers that manage coins. In
fact, peer load decreases as network size increases because
more payments are absorbed by the greater total amount of
picopayment credit (recall that maximum possible credit is
equal to the network size times the size of the credit win-
dow). Broker load scales sublinearly with network size for
the same reason. The only potentially unscalable result the
NetLossCap method for bounding credit loss, and we discuss
this issue in Section 7.2.3. Please refer to [17] for figures
showing the above scalability results.

6.3 Simulation Framework
In a given simulation run, we simulate Network Size peers

participating in the GUESS protocol. At the beginning of
the simulation, peers begin with a limit certificate but no
printed coins (e.g., as if the peers just joined the network).
Over time peers print new coins as they are needed. We
assume the limit certificate is large enough to handle each
peer’s needs for the duration of the simulation, which is 40
simulated days. Throughout the simulation, peers may go
offline and come back online. The duration of these on-
line and offline periods follow the distribution of lifespans
and downtimes measured by [15] over the Gnutella net-
work. We may tune online or offline times via the Lifespan
Multiplier and Downtime Multiplier parameters, respec-
tively. If Lifespan Multiplier = x, then all values in the
measured distribution of lifetimes are multiplied by x. At
the end of the simulation, we assume that all peers leave
the system and cash in their coins. Doing so is a worst-case
scenario for our scheme since in practice, the existing coins
can continue to “float” before they are cashed.

The “arrival” of queries at each peer follows a Poisson
process with rate Query Rate. When a peer has a query, it
will sequentially probe the peers in its pong cache, which is
of size Pong Cache Size. Peers in the cache may be offline,
and the queryer need only pay peers that are online. To
determine whether a peer returns a result for a query, we
use the query model developed in [16]. Though this query
model was developed for hybrid file-sharing systems, it is
still applicable to the file-sharing systems we are studying.
The probability of a peer returning a result depends partially
on the number of files owned by that peer; number of files
owned by peers are assigned according to the distribution
of files measured by [15] over Gnutella. If a peer returns a
result to the queryer, then the query is stopped. Otherwise,

306

the queryer will probe every live node in its cache before
stopping the query.

When a peer makes a payment, it will first try to pay
with a coin for which the owner is online. If the peer has no
such coin, it will attempt to pay with a coin via layers. If
all its coins already contain the maximum number of layers,
the peer may reassign a coin through the broker, or print
its own coin if it has a valid limit certificate (in Section 7.1
we compare these two alternatives). Within each class of
coin (e.g., the class of coins whose owners are alive), the
peer may often choose among several coins in its possession.
The order in which coins are selected may have security and
performance implications; for example, a peer V may choose
a coin owned by another peer U , if V already holds many
coins belonging to U . This policy decreases V ’s risk if U
commits large-scale fraud. While the ordering of coins is an
interesting question, in our simulations coins within a class
are accessed through a queue.

Action Costs. Our simulations tell us how many “macro
actions” each entity must execute, such as signature gener-
ations, message transfers, etc. In order to calculate load,
we now need to calculate to cost of these actions, measured
in bytes for bandwidth, and cycles for processing. Due to
space limitations, details on how these costs are determined
can be found in our extended report [17].

7. RESULTS
In this section we present and discuss the results of our

simulations. We divide the results into two sections, cor-
responding to the two main questions that we wish to in-
vestigate: (1) The performance of the PPay micropayment
scheme relative to other schemes, and (2) the tradeoffs in-
volved in setting micropayment parameter values.4

7.1 Comparison with Existing Schemes
We compare PPay against the micropayment scheme pro-

posed by Rivest et. al. in [11, 14] (the RM scheme).
We choose the RM scheme among many possible existing
schemes because it is the most recent research in the area
known to the authors. In this scheme, users print tokens
(like coins) to give to vendors as payment. Vendors then
give these coins to the broker to redeem. In fact, the RM
scheme is a special case of our scheme in which peers im-
mediately5 cash every coin they receive. On top of RM,
Payword hash chains are used to delay the payment of a
coin, as discussed in Section 5.4. We also allow the use of
layered, transferable coins. The maximum number of layers
allowed before a coin must be cashed is set by Max Layers.

We compare the RM scheme to two variants of PPay. By
default, we assume peers prefer printing a new coin over us-
ing the downtime protocol. If a peer must make a payment,
and it does not possess any coins whose owners are alive or
that can be layered, the peer will print a new coin. In the
second variant, which we call “PPay*”, peers prefer using
the downtime protocol over printing a new coin. Likewise
for renewals, in the first variant peers prefer to cash a coin

4Due to space limitations, we report all load results in terms
of processing cost. Bandwidth results can be omitted be-
cause in all our experiments, either behavior is comparable
to processing cost results, and/or the absolute bandwidth
costs are very low, making them insignificant relative to pro-
cessing costs.
5By immediate, we mean that the coin is not reassigned to
a different user before it is cashed.

that is about to expire, rather than have it renewed through
the broker; in PPay*, the preference is switched. While the
first variant conserves broker load in terms of renewals and
reassignments, it also causes more coins to be printed, which
must eventually be cashed. In our performance studies, we
want to see whether this tradeoff is worthwhile.

Figure 1 shows us the broker’s load (work per unit time)
in the three micropayment schemes in terms of processing
cost, as Downtime Multiplier is varied. Bars are labeled
below according to Downtime Multiplier value, and shade
indicates the micropayment scheme. For now, let us focus
on Downtime Multiplier = 1, the default case.

We see from Figure 1 that PPay and PPay* perform sig-
nificantly better than RM. While the broker must cash O(n)
coins in RM, where n is the number of transactions, it must
only cash O(m) coins in PPay and PPay*, where m is the
number of coins. Therefore, in this simulation RM broker
load (40.6 · 105 Hz) is over 12 times heavier than in PPay*
(3.46 · 105 Hz), and over 20 times heavier than in PPay
(1.98 · 105 Hz).

At the same time, PPay outperforms PPay* because the
broker no longer needs to reassign or renew any coins. In-
stead, for each reassignment/renewal the broker used to do
in PPay* (which constituted about 43% of broker load), it
now has to cash at most one new coin. Since cashing (1 veri-
fication) is substantially less expensive than reassignment or
renewal (1 verification + 1 generation), broker load is like-
wise less expensive. The price of PPay falls onto the peer
(discussed later), rather than the broker, which is a desir-
able tradeoff from our perspective. From Figure 1, then, we
can conclude that floating, self-managed coins are crucial to
minimizing broker performance in a P2P application.

Recall that the distributions of online and offline periods
are measured directly from the Gnutella network. There-
fore, these distributions reflect the instability of peers, and
their tendency to come online for short periods of time.6

Despite peer instability, PPay and PPay* continue to per-
form well. One interesting question is how far can we “push”
the instability of peers before the broker in PPay becomes
overloaded.

Let us look again at Figure 1. In general, overall application-
level activity decreases in absolute value as offline periods
increase in duration (i.e., Downtime Multiplier increases),
because there are fewer peers online performing queries. At
Downtime Multiplier = 20, only 3% of all peers are online
at any given time, on average. We believe this scenario is
very extreme, yet PPay continues to far outperform RM. At
Downtime Multiplier = 20, broker load in RM (2.94 · 105

Hz) is over 7 times heavier than load in PPay (.41 · 105

Hz). However, broker load in PPay* actually increases as
application-level activity decreases, because the number of
reassignments and renewals that must go through the bro-
ker increases. At Downtime Multiplier = 20, 89% of broker
load in PPay* (3.59·105 MHz) consists of reassignment load.
As a result, PPay* has the highest load of all.

While we have achieved our goal of significantly reducing
broker load, we still need to make sure that peer load does
not suffer. Figure 2 is just like Figure 1, except that it shows

6These distributions do not reflect the case where some
peers may log on, log off, and then never come back to the
network again. In our simulations, we assume that even
though peers are online for short periods of time, they will
always come back at some (possibly distant) time in the fu-
ture. This assumption is reasonable in a system where peers
have an incentive to come back (i.e., to make money).

307

1 10 20
0

1

2

3

4

5

6

7

8
x 10

5

Downtime Multiplier

P
ro

ce
ss

in
g

C
os

t (
H

z)
PPay
PPay*
RM

4.1 x 10
6

Figure 1: Comparison of broker
processing loads in PPay vs. RM
as Downtime Multiplier varies

1 10 20
0

1

2

3

4

5

6
x 10

5

Downtime Multiplier

P
ro

ce
ss

in
g

C
os

t (
H

z)

PPay
PPay*
RM

Figure 2: Comparison of peer
processing loads in PPay vs. RM
as Downtime Multiplier varies

0 2 4 8
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

P
ro

ce
ss

in
g

C
os

t (
H

z)

Max Layers

Limit Cert
Cashing

Figure 3: Broker load is barely
affected by Max Layers

average peer load, rather than broker load. In this figure,
we see that peers in PPay do have higher load than peers in
PPay*, but only slightly. As we mentioned earlier, peers in
PPay will need to manage more coins than in PPay*. The
cost of managing these coins comes from reassignments and
renewals. However, note that since the number of reassign-
ments is not affected by the number of coins in circulation,
having more coins does not necessarily mean that reassign-
ment load will be higher. Furthermore, renewals only con-
stitute about 6% of total peer load in PPay, which is higher
than it is in PPay*, but still not a significant cost. As a
result, PPay has peer load that is comparable to PPay*.

Also in Figure 2, we see that peers in PPay and PPay*
have processing load that is roughly 50% higher than peer
loads in RM. Peer bandwidth load (not shown) is 25-35%
heavier than in RM. While the increase in peer load is non-
trivial, we believe it is a desirable tradeoff with broker load
for two reasons. First, the absolute value of peer loads are
small; users probably would not notice the extra load. Sec-
ond, although the absolute values of broker load shown in
these experiments are not much higher than peer loads, re-
call from Section 6.2 that peer load decreases slightly as the
number of peers grows, while broker load increases (sublin-
early). When network size grows, for example, to 1 million,
broker load will be much higher than peer load. Therefore,
from a scalability viewpoint, it is most important for broker
load to be minimized.

Because PPay outperforms PPay* in all the scenarios we
studied, in terms of broker load, we will only present results
for PPay from this point on. PPay has also outperformed
RM in the experiments we have looked at thus far, but there
are specific scenarios in which RM outperforms PPay. In
particular, the worst-case scenario for PPay is the extreme
case in which each coin is used exactly once before being
cashed. Even in this scenario, however, broker load is com-
parable in both micropayment schemes: bandwidth load is
35% higher in PPay, and processing load just 6.6% higher.
Further details are given in our extended report [17].

7.2 Setting Micropayment Parameters

7.2.1 Layers
Figure 3 shows us broker processing load as the maximum

number of allowed layers on a coin (Max Layers) is varied.
In this figure, Downtime Multiplier = 20, because the more
peers that are offline, the more impact layers will have on

performance. As we can see, broker performance varies very
little as Max Layers increases We initially found this result
quite surprising. Because coin owners are often down when
a payment must be made (with almost 97% probability, on
average), we would have expected layers to be very useful in
avoiding the need to print new coins. However, recall that
new coins are printed in two payment scenarios: (1) when
the peer has no coins, and (2) when a peer has coins but the
owners are offline, and layers cannot be used (e.g., because
the maximum number of layers has been reached). It turns
out that printing more coins in scenario 2 results in print-
ing fewer coins in scenario 1, such that the total number of
coins printed is not largely affected by layers. Because layers
have so little impact on broker performance (nor peer per-
formance), and since layers do delay the detection of fraud,
we recommend that very low values for Max Layers (e.g., 0
or 1).

7.2.2 Coin Renewal
The Renewal Wait parameter specifies the system-wide

renewal period for a coin. Renewals present a tradeoff be-
tween performance and security, and state management as
well. As discussed in Section 5.3, the renewal period deter-
mines the worst-case time to fraud detection. Therefore, the
closer together renewals are, the tighter the bound. State
also decreases, because audit trails are purged after each re-
newal period. However, load increases, since each renewal is
fairly expensive.

In our implementation, we assume that that coins are re-
newed every Renewal Wait = w days, and that the renewal
window is also w days long. That is, if the renewal begin-
time of an assignment is rb, then after a renewal, the new
renewal begin-time is rb + w, and the renewal end-time is
rb + 2 · w

Figures 4 and 5 illustrate the tradeoff between peer load
and state as Renewal Wait is varied. Figure 4 shows peer
processing load divided into four main tasks: GUESS-related
work (e.g., processing queries), reassignments, renewals, and
miscellaneous (e.g., cashing coins). As we can see, renewals
take up a non-trivial fraction of peer load, ranging from 20%
at Renewal Wait = 10 days to 6% at Renewal Wait = 30
days. However, Figure 5 shows us that although Renewal
Wait does have an impact on the amount of state a peer must
store, this impact is limited. Therefore, the more important
tradeoff is between performance and security. In terms of
broker load, Renewal Wait has very little effect, since the

308

10 days 20 days 30 days
0

0.5

1

1.5

2

2.5
x 10

4

259

Renewal Wait (w)

P
ro

ce
ss

in
g

C
os

t (
H

z)
GUESS
Reassignment
Renewal
Misc.

Figure 4: Peer load decreases as
renewal period increases

10 days 20 days 30 days
0

20

40

60

80

100

120

140

160

Renewal Wait (w)

S
to

ra
ge

 (

pr
oo

fs
)

Figure 5: Peer storage (aver-
age number of proofs stored over
time) increases as renewal period
increases

10 20 100
0

0.5

1

1.5

2
x 10

5

Credit Window (x)

P
ro

ce
ss

in
g

C
os

t (
H

z)

Limit Cert
Cashing

SWC

Payword

SWC

Payword

SWC

Payword

Figure 6: Soft credit windows
have better broker load by ac-
counting for symmetric peer rela-
tionships

number of coins printed due to payment is far higher than
the number of coins printed due to expired coins. Therefore,
since broker load is unaffected and peer load is scalable, we
recommend a relatively low Renewal Wait, such as 10 days
in our application scenario. Note that the renewal period
should not be too low (e.g., 1 day), otherwise peers may not
have a chance to renew their coins due to downtimes.

We note that in Figure 4, for peer loads, the overhead of
PPay relative to the load of the application (GUESS) is very
high - about 18 times higher. However, this comparison is
skewed, as GUESS is not processing-intensive. In terms of
bandwidth, the overhead of PPay is just 4% of the GUESS
load. Furthermore, if we set Credit Window Size to 100
(default is 10), then even the processing overhead of PPay
is just 13%, and the bandwidth overhead just .03%. In both
processing and bandwidth cost, absolute overhead is always
very low; therefore we do not believe the overhead of PPay
for peers to be a significant issue.

7.2.3 Credit Windows
Figure 6 shows the processing load of the broker as Credit

Window Size is varied, for both Payword hash chains (Pay-
word) and soft credit windows (SWC). We immediately ob-
serve that credit window size greatly affects broker load –
large credit window is crucial for good broker performance.

As we discussed in Section 5.4, Payword cannot take ad-
vantage of the “back and forth” symmetry of peer relation-
ships. Soft credit windows, on the other hand, are designed
to take this symmetry into account. In Figure 6, we see
that soft credit windows consistently outperform Payword
for this reason: broker load with Payword ranges from being
over 40% heavier at Credit Window Size=10, to almost 3
times heavier at Credit Window Size = 100. Furthermore,
peer load shows an even greater performance benefit with
soft credit windows. Figure 7 shows peer load as a func-
tion of window size, in terms of processing cost. Here, we
see how Payword loads range from 17 times heavier (at a
window size of 10) to over 38 times heavier (at a window
size of 100)! Clearly, then, exploiting the symmetry of peer
relationships is very beneficial to performance of both the
broker and peers.

NetLossCap. Figures 6 and 7 show us the benefits of soft
credit windows when no credit loss cap is applied. However,
as we discussed in Section 5.4, in practice we need to bound
the risk taken by peers using the NetLossCap method. Be-

fore discussing NetLossCap, let us define how a misbehaving
peer might take advantage of soft credit windows.

We assume that the goal of a misbehaving peer is to re-
ceive the best quality service possible while spending no
money. In other words, rather than being malicious, the
peer is lazy. A lazy peer pj will never pay a coin for service.
Instead, it will only probe a peer pi if cij < x, where x is
the size of the credit window. Because a lazy peer pj still
wants to receive service, it will not lie about its view of cij ,
since that will cause peer pi to shun it. Furthermore, the
lazy peer is willing to provide service to other nodes, since it
can potentially make money by doing so, and because it will
at least receive credits to redeem for service in the future.
For this same reason, then, the lazy node will not lie about
its cap value (e.g., will not refuse service to another peer by
claiming that lj = v).

Now, let us see how effective NetLossCap is as Credit
Window Size and Percent Lazy Node (the percentage of peers
in the network that are lazy) vary. Recall that we assume
all peers permanently leave the system at the end of the
simulation. Credit loss for a peer pi in the following figures
therefore reflect li(40 days).

First, Figure 8 shows us the mean and maximum credit
losses of non-lazy peers in our simulation, when NetLossCap
is not used. Along the x-axis we vary credit window size,
while the different curves show different values of Percent
Lazy Node. For example, when Credit Window Size = 100
when there are no lazy peers, the largest value of li(40 days)
observed for some peer pi is roughly 12000 picopayments.
This worst-case observed value is rare, however; 90% of all
li(40 days) values are under 4000, while the average value
of li(40 days) is 0.

We make several observations. First, the percentage of
lazy peers in the system does not seem to greatly affect the
risk of non-lazy peers. The reasons for this are that (1) credit
risk is already very high, with no lazy peers, and (2) lazy
peers are not cheating, per se – they are simply acting con-
servatively. Cheating peers will eventually be cut off from
the rest of the system; hence, lazy/cheating peers do not
pose a significant additional risk to the existing credit risk
of an honest peer. Second, soft credit window size greatly
affects potential credit loss. The need for a way to bound
credit loss is clear, if we are going to reap the benefits of
large credit windows.

When we apply the NetLossCap method with a cap value

309

10 20 100
0

1

2

3

4

5

6
x 10

5

Credit Window (x)

P
ro

ce
ss

in
g

C
os

t (
H

z)
GUESS
Reassignment
Renewal
Misc.

SWC SWC
SWC

Payword

Payword

Payword

Figure 7: Soft credit windows
have better broker load by ac-
counting for symmetric peer rela-
tionships

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

14000

Credit Window (x)

C
re

di
t L

os
s

(p
ic

o)

%lazy = 0
%lazy = 10
%lazy = 20

Figure 8: Maximum credit loss
increases as credit window size in-
creases

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5
x 10

5

Credit Window (x)

P
ro

ce
ss

in
g

C
os

t (
H

z)

Cap = 500
Cap = 1000
Cap = 2000
No Cap

Figure 9: Broker load as the
credit loss cap value varies

of v, the maximum observed credit loss is always v, regard-
less of credit window size. As an example, when window size
is 100 and v = 500, maximum credit loss is 500, as opposed
to 12000 when there is no cap. However, we need to be sure
that using NetLossCap does not significantly affect perfor-
mance – otherwise, hash chains may be a better alternative
than soft credit windows.

Figure 9 shows us broker processing load as cap value and
credit window size are varied. Window size is varied along
the x-axis, and different curves represent different cap val-
ues. Although the lines may be difficult to distinguish, the
basic shape of the curves tells us what we need to know.
First, the choice of Credit Window Size is still very im-
portant in tuning performance, for all cap values shown.
Second, assuming the cap value is not too small, cap values
do not significantly degrade performance. Although this re-
sult may be surprising at first, the cause goes back to the
law of large numbers. Even though credit between pairs of
peers may be imbalanced (e.g., cij = 100 and cik = −100),
the sum of these individual credits, li, will fall closer to the
expected value, which is 0. Finally, we found (not shown
here) that the quality of service received by each peer is not
affected by NetLossCap, for the cap values studied. Hence,
in the given simulation scenario, the NetLossCap method is
very effective in limiting risk while maintaining good perfor-
mance.

However, we note that the NetLossCap method is not nec-
essarily scalable. As the number of peers in the system in-
crease, if we assume that all users interact with all other
peers, then the cap value must also increase proportionally.
However, if the number of peers with which a given peer
interacts does not grow with the size of the network, which
may be reasonable in many situations (e.g., peers only inter-
act with neighbors), then NetLossCap does scale. In either
case, important future work lies in designing a quick pay-
ment mechanism that can take into account symmetric peer
relationships, but can also provide proof of the credit bal-
ance to the broker.

8. CONCLUSION
Business-oriented P2P applications hold great potential

for the future. Before such applications can take off, how-
ever, there must be an efficient way for peers to pay each
other for services. In this paper, we present PPay, an effi-
cient micropayment scheme designed for P2P applications.

By identifying and exploiting characteristics unique to P2P
applications, PPay can significantly outperform existing schemes
in terms of broker load, while maintaining a reasonable peer
load. We present a detailed performance analysis over a
sample P2P application to support our claims, and to illus-
trate how PPay can be tuned for best performance.

9. REFERENCES
[1] H. Antwerpen. Electronic cash. Technical report, University

of Eindhoven, Masters Thesis, 1990.
[2] N. Asokan, Matthias Schunter, and Michael Waidner.

Optimistic protocols for multi-party fair exchange.
Technical Report RZ 2892 (# 90840), 1996.

[3] D. Chaum and T. Pederson. Transferred cash grows in size.
In Advances in Cryptology – EUROCRYPT ’92, 1993.

[4] DigiCash website. http://digicash.com.
[5] S. Glassman, M. Manasse, M. Abadi, P. Gauthier, and

P. Sobalvarro. The millicent protocol for inexpensive
electronic commerce. In In Proc. of WWW4, 1995.

[6] Gnutella website. http://www.gnutella.com.
[7] GUESS protocol specification. http://groups.yahoo.com/-

group/the gdf/files/Proposals/GUESS/guess o1.txt.
[8] B. Horne, B. Pinkas, and T. Sander. Escrow services and

incentives in peer-to-peer networks. In Proceedings of 3rd
ACM Conference on Electronic Commerce, 2001.

[9] KaZaA website. http://www.kazaa.com.
[10] J. Kytojoki and V. Karpijoki.

Micropayments - Requirements and Solutions.
http://www.tml.hut.fi/Opinnot/Tik-110.501/1999/papers/-
micropayments/micropayments.html.

[11] S. Micali and R. Rivest. Micropayments revisted. In
”CT-RSA”, 2002.

[12] MojoNation website. http://web.archive.org/-
web/20020122164402/http://mojonation.com/.

[13] NetBill website. http://www.ini.cmu.edu/netbill.
[14] R. Rivest and A. Shamir. Payword and micromint: two

simple micropayment schemes. In Security Protocols
Workshop, 1996.

[15] S. Saroiu, P. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proc. of the
Multimedia Computing and Networking, January 2002.

[16] B. Yang and H. Garcia-Molina. Comparing hybrid
peer-to-peer systems. In Proc. of the 27th Intl. Conf. on
Very Large Databases, September 2001.

[17] B. Yang and H. Garcia-Molina. Ppay: Micropayments for
peer-to-peer systems. Technical report, Stanford University,
2003. http://dbpubs.stanford.edu/pub/2003-31.

310

