Mixing Email with BABEL'96

Ceki Gulcu, Gene Tsudik IBM Zurich, Switzerland

cs6461, Fall 2008 Computer Science, Michigan Tech Byung Choi

Introduction

- The most critical network building block for anonymity: Mix by Chaum'81
- Absolute anonymity: dining cryptographers algorithm and protocol by Chaum'88
 - Impractical due to the large protocol overhead
 - Hard to provide secure pairwise channels and a synchronized broadcast channel
- Advancement being sought

Related work

- Anonymous Email systems
 - Penet: Finland 1990s
 - Cypherpunk: 1990s now?
 - Mixmaster: 1990s now?
 - Implementations of the concept of Mix by a single individual or a group of contributors
- Systematic improvements needed

Desired properties (requirements)

- Email systems accommodate anonymity
- Hard to determine the sender
- Recipient can reply the anonymous sender
- End-point anonymity preserved, intermediate mixes are not maximally trusted
- Infrastructure resistant to active attacks
- Sender gets an anonymous confirmation
- Low noise

Notation

M	message; sequence of ASCII bits
$E_x(M)$	encryption of M with X's public key
$D_x(M)$	decryption of M with X's private key
$K\{M\}$	conventional encryption of M with key K
(M_1, M_2)	concatenation of M_1 and M_2
\mathcal{A}_x	X's email address.
$\lceil M \rceil^{\Omega}$	padding string M to length Ω
, ,	(by appending random bits)
$\lfloor M \rfloor^{\Omega}$	trimming string M to length Ω
	(by removing trailing bits)

Mix, revisted

Attacks

- Passive
 - Content correlation:
 - uniform length, padding, nonce
 - Time correlation:
 - Regular vs. interval batching
- Active
 - Isolate and Identify
 - Message replay:
 - time stamp, message identifier
 - Cascading or chaining mixes

BABEL

- Forward path
 - Composition by sender
 - Processing by mixes
 - What does a mix know?

Forward message

Forward message

$$x_f = E_{F_1}(\mathcal{A}_{F_2}, E_{F_2}(\dots E_{F_{f-1}}(\mathcal{A}_{F_f}, E_{F_f}(\mathcal{A}_{Bob}, \lceil M \rceil^{\Omega})) \dots))$$

BABEL

- Return path
 - Creating RPI
 - Replying by recipient
 - Reply processing by BABEL
 - Handling replies at the originator
 - Two-way anonymous conversation
 - Security of replies
 - Inter-mix Detours
 - Indirect replies

Return path

RPI

$$y_r = A_{R_1}, E_{R_1}(K_1, A_{R_2}, E_{R_2}(K_2, ... E_{R_r}(K_r, A_{Alice}, E_{Alice}(KS, r))...)$$

Return path information

Reply message

Email (SMTP) Header

RPI

Message Body

Two-way anonymity

Security of replies

Inter-mix detours

Keeping message size constant

Heeding anonymity

- Fixed-path systems
- System staunchness, miss & guess factors
- Quest for confusion
 - Probabilistic deferment
 - Hybrid approach

Trickle attack

Interval batching

Probabilistic deferment

$$P\{K = k\} = {m \choose k} q^{m-k} d^k \text{ where } k = 0, \dots, m,$$

Binomial function

