
1

Chord: A Scalable Peer-to-peer
Lookup Service for Internet
Applications

Ion Stoica, Robert Morris, David
Karger, M. Frans Kaashoek, Hari

Balakrishnan
SIGCOMM’01, August 2001
Presented by Byung Choi

2

Outline

�

Introduction

�

System Model

�

The Base Chord Protocol

�

Concurrent Operations and Failures

�

Simulation and Experimental Results

�

Future Work & Conclusion

3

Introduction

�

Peer-to-peer systems and applications
are distributed systems without any
centralized control or hierarchical
organization.

�

The core operation in most peer-to-peer
systems is efficient location of data
items.

�

The Chord protocol supports just one
operation: given a key, it maps the
key onto a node.

4

System Model

�

Load balance:

�

Chord acts as a distributed hash function, spreading keys
evenly over the nodes.

�

Decentralization:

�

Chord is fully distributed: no node is more important than
any other.

�

Scalability:

�

The cost of a Chord lookup grows as the log of the number
of nodes, so even very large systems are feasible.

�

Availability:

�

Chord automatically adjusts its internal tables to reflect
newly joined nodes as well as node failures, ensuring
that, the node responsible for a key can always be found.

�

Flexible naming:

�

Chord places no constraints on the structure of the keys it
looks up.

5

System Model (cont.)

�

The application interacts with Chord in
two main ways:

�

Chord provides a lookup(key) algorithm
that yields the IP address of the node
responsible for the key.

�

The Chord software on each node notifies
the application of changes in the set of
keys that the node is responsible for.

6

Distributed Storage System
Based on Chord

Figure 1: Structure of an example Chord-based distributed storage system.

7

The Base Chord Protocol

�

The Chord protocol specifies how to find the
locations of keys.

�

It uses consistent hashing, all nodes receive roughly
the same number of keys.

�

When an N th node joins (or leaves) the network, only
an O (1/N) fraction of the keys are moved to a
different location.

�

Improves the scalability of consistent hashing by
avoiding the requirement that every node know
about every other node.

�

In an N-node network, each node maintains
information only about O (log N) other nodes, and
a lookup requires O (log N) messages.

8

Consistent Hashing

�

The consistent hash function assigns each node and
key an m-bit identifier using a base hash function
such as SHA-1.

�

Identifiers are ordered in an identifier circle modulo
2m.

�

Key k is assigned to the first node whose identifier is
equal to or follows k in the identifier space. This
node is called the successor node of key k.

�

If identifiers are represented as a cycle of numbers
from 0 to 2m – 1, then successor(k) is the first
node clockwise from k.

9

Consistent Hashing (cont.)

Figure 2. An identifier circle consisting of the three nodes 0, 1, and 3.
In this example, key 1 is located at node 1, key 2 at node 3,
and key 6 at node 0.

10

Consistent Hashing (cont.)

�

THEOREM 1. For any set of N nodes
and K keys, with high probability:

�

1. Each node is responsible for at most
(1+)K /N keys.

�

2. When an (N + 1)st node joins or leaves
the network, responsibility for O (K /N)
keys changes hands (and only to or from
the joining or leaving node).

11

Scalable key Location

�

Let m be the number of bits in the
key/node identifiers.

�

Each node, n, maintains a routing table
with (at most) m entries, called the
finger table.

�

The i th entry in the table at node n
contains the identity of the first node,
s, that succeeds n by at least 2i -1 on
the identity circle.

12

Scalable key Location (cont.)

Table 1: Definition of variables for node n, using m-bit identifiers.

13

Scalable key Location (cont.)

Figure 4: The pseudo
code to find the
successor node of an
identifier id. Remote
procedure calls and
variable lookups are
preceded by the remote
node.

14

Scalable key Location (cont.)

Figure 3: (a) The finger intervals associated with node 1. (b) Finger tables and
key locations for a net with nodes 0, 1, and 3, and keys 1, 2, and 6.

15

Scalable key Location (cont.)

�

THEOREM 2. With high probability (or
under standard hardness
assumption), the number of nodes
that must be contacted find a
successor in an N-node network is O
(log N).

16

Node Joins

�

Each node in Chord maintains a predecessor
pointer, and can be used work
counterclockwise around the identifier circle.

�

When a node n joins the network:

�

1. Initialize the predecessor and fingers of node n.

�2. Update the fingers and predecessors of existing
nodes to reflect the addition of n.

�

3. Notify the higher layer software so that it can
transfer state (e.g. values) associated with keys that
node n is now responsible for.

17

Node Joins (cont.)

Figure 6: Pseudo code for the node
join operation.

18

Node Joins (cont.)

Figure 5: (a) Finger tables and key locations after node 6 joins. (b) Finger table
and key locations after node 1 leaves. Changed entries are shown in
black , and unchanged in gray.

19

Concurrent Operations :
Stabilization

�

A basic “ stabilization” protocol is used to keep nodes’
successor pointers up to date, which is sufficient to
guarantee correctness of lookups.

�

If joining nodes have affected some region of the Chord
ring, a lookup that occurs before stabilization has
finished can exhibit one of three behaviors.

�

All the finger table entries involved in the lookup are reasonably
current, and the lookup finds the correct successor in O (log
N) steps.

�

Successor pointers are correct, but fingers are inaccurate.

�

The nodes in the affected region have incorrect successor
pointers, or keys may not yet have migrated to newly joined
nodes, and the lookup may fail.

�

These cases could be detected and repaired by periodic
sampling of the ring topolgy.

20

Stabilization

Figure 7: Pseudo code
for stabilization.

21

Failures and Replication�

When a node n fails, nodes whose finger tables include
n must find n’s successor.

�

Each Chord node maintains a “ successor-list” of its r
nearest successor on the Chord ring.

�

THEOREM 7. If we use a successor list of length r = O
(log N) in a network that is initially stable, and then
every node fails with probability ½, then with high
probability find_successor returns the closest living
successor to the query key.

�

THEOREM 8. then expected time to execute
find_successor in the failed network is O (log N)

�

A node’s r successors all fail with probability 2-r = 1/N .

�

A typical application using Chord might store replicas
of the data associated with key at the k nodes
succeeding the key.

22

Simulation: Load Balance

Figure 8: (a) The mean and 1st and 99th percentiles of the number of keys
stored per node in a 104 node network.

23

Load Balance (cont.)

Figure 8: (b) The probability density function (PDF) of the number of keys
per node. The total number of keys is 5 x 105.

24

Load Balance (cont.)

Figure 9: The 1st and the 99th percentiles of the number of keys per node as
a function of virtual nodes mapped to a real node. The network has
104 real nodes and stores 106 keys.

25

Path Length

Figure 10: (a) The path length as a function of network size.

26

Path Length (cont.)

Figure 10: (b) The PDF of the path length in the case of a 212 node network.

27

Simultaneous Node Failures

Figure 11: The fraction of lookups that fail as a function of the
fraction of nodes that fail.

28

Lookups During Stabilization

Figure 12: The fraction of lookups that fail as a function of the rate (over
time) at which nodes fail and join. Only failures caused by

Chord state inconsistency are included, not failures due to lost keys.

29

Experimental Results

Figure 13: Lookup latency on the Internet prototype, as a function
of the total number of nodes. Each of the ten physical sites runs

multiple independent copies of the Chord node software.

30

Future Work

�

Chord currently has no specific mechanism
to heal partitioned rings; such rings could
appear locally consistent to the
stabilization procedure.

�

Instead of placing its fingers at distances that
are all powers of 2, Chord could easily be
changed to place its fingers at distances
that are all integer powers of 1 + 1/d .

31

Conclusion

�

The Chord protocol solves that applications need not
to determine the node that stores a data item.

�

Given a key, it determines the node responsible for
storing the key’s value, and does so efficiently.

�

In the steady state, in an N-node network, each node
maintains routing information for only about O (log
N) other nodes,

�

and resolves all lookups via O (log N) messages to
other nodes.

�

Updates to the routing information for nodes leaving
and joining require only O (log2N) messages.

�

Chord scales well with the number of nodes, and
answers most lookups correctly even during
recovery.

