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Introduction

�

Peer-to-peer systems and applications 
are distributed systems without any 
centralized control or hierarchical 
organization.

�

The core operation in most peer-to-peer 
systems is efficient location of data 
items.

�

The Chord protocol supports just one 
operation: given a key, it maps the 
key onto a node.
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System Model

�

Load balance:

�

Chord acts as a distributed hash function, spreading keys 
evenly over the nodes.

�

Decentralization:

�

Chord is fully distributed: no node is more important than 
any other.

�

Scalability:

�

The cost of a Chord lookup grows as the log of the number 
of nodes, so even very large systems are feasible. 

�

Availability:

�

Chord automatically adjusts its internal tables to reflect 
newly joined nodes as well as node failures, ensuring 
that, the node responsible for a key can always be found.

�

Flexible naming:

�

Chord places no constraints on the structure of the keys it 
looks up.
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System Model (cont.)

�

The application interacts with Chord in 
two main ways:

�

Chord provides a lookup(key) algorithm 
that yields the IP address of the node 
responsible for the key.

�

The Chord software on each node notifies 
the application of changes in the set of 
keys that the node is responsible for.
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Distributed Storage System 
Based on Chord

Figure 1: Structure of an example Chord-based distributed storage system.
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The Base Chord Protocol

�

The Chord protocol specifies how to find the 
locations of keys.

�

It uses consistent hashing, all nodes receive roughly 
the same number of keys.

�

When an N th node joins (or leaves) the network, only 
an O (1/N ) fraction of the keys are moved to a 
different location.

�

Improves the scalability of consistent hashing by 
avoiding the requirement that every node know 
about every other node.

�

In an N-node network, each node maintains 
information only about O (log N ) other nodes, and 
a lookup requires O (log N ) messages.
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Consistent Hashing

�

The consistent hash function assigns each node and 
key an m-bit identifier using a base hash function 
such as SHA-1.

�

Identifiers are ordered in an identifier circle modulo 
2m.

�

Key k is assigned to the first node whose identifier is 
equal to or follows k in the identifier space. This 
node is called the successor node of key k.

�

If identifiers are represented as a cycle of numbers 
from 0 to 2m – 1, then successor(k ) is the first 
node clockwise from k.
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Consistent Hashing (cont.)

Figure 2. An identifier circle consisting of the three nodes 0, 1, and 3.
In this example, key 1 is located at node 1, key 2 at node 3,
and key 6 at node 0.
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Consistent Hashing (cont.)

�

THEOREM 1. For any set of N nodes 
and K keys, with high probability:

�

1. Each node is responsible for at most 
(1+ )K /N  keys.

�

2. When an (N + 1 )st node joins or leaves 
the network, responsibility for O (K /N ) 
keys changes hands (and only to or from 
the joining or leaving node).
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Scalable key Location

�

Let m be the number of bits in the 
key/node identifiers.

�

Each node, n, maintains a routing table 
with (at most) m entries, called the 
finger table.

�

The i th entry in the table at node n 
contains the identity of the first node, 
s, that succeeds n by at least 2i -1 on 
the identity circle.
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Scalable key Location (cont.)

Table 1: Definition of variables for node n, using m-bit identifiers.
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Scalable key Location (cont.)

Figure 4: The pseudo 
code to  find the 
successor node of an 
identifier id. Remote 
procedure calls and 
variable lookups are 
preceded by the remote 
node.
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Scalable key Location (cont.)

Figure 3: (a) The finger intervals associated with node 1. (b) Finger tables and 
key locations for a net with nodes 0, 1, and 3, and keys 1, 2, and 6.
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Scalable key Location (cont.)

�

THEOREM 2. With high probability (or 
under standard hardness 
assumption), the number of nodes 
that must be contacted find a 
successor in an N-node network is O
(log N ).
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Node Joins

�

Each node in Chord maintains a predecessor 
pointer, and can be used work 
counterclockwise around the identifier circle.

�

When a node n joins the network:

�

1. Initialize the predecessor and fingers of node n.

�2. Update the fingers and predecessors of existing 
nodes to reflect the addition of n.

�

3. Notify the higher layer software so that it can 
transfer state (e.g. values) associated with keys that 
node n is now responsible for.
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Node Joins (cont.)

Figure 6: Pseudo code for the node 
join operation.
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Node Joins (cont.)

Figure 5: (a) Finger tables and key locations after node 6 joins. (b) Finger table
and key locations after node 1 leaves. Changed entries are shown in
black , and unchanged in gray.
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Concurrent Operations : 
Stabilization

�

A basic “ stabilization”  protocol is used to keep nodes’ 
successor pointers up to date, which is sufficient to 
guarantee correctness of lookups.

�

If joining nodes have affected some region of the Chord 
ring, a lookup that occurs before stabilization has 
finished can exhibit one of three behaviors.

�

All the finger table entries involved in the lookup are reasonably 
current, and the lookup finds the correct successor in O (log 
N ) steps.

�

Successor pointers are correct, but fingers are inaccurate.

�

The nodes in the affected region have incorrect successor 
pointers, or keys may not yet have migrated to newly joined 
nodes, and the lookup may fail.

�

These cases could be detected and  repaired by periodic 
sampling of the ring topolgy.
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Stabilization

Figure 7: Pseudo code 
for stabilization.
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Failures and Replication�

When a node n fails, nodes whose finger tables include 
n must find n’s successor.

�

Each Chord node maintains a “ successor-list”  of its r 
nearest successor on the Chord ring.

�

THEOREM 7. If we use a successor list of length r = O 
(log N ) in a network that is initially stable, and then 
every node fails with probability ½, then with high 
probability find_successor returns the closest living 
successor to the query key.

�

THEOREM 8. then expected time to execute 
find_successor in the failed network is O (log N )

�

A node’s r successors all fail with probability 2-r = 1/N .

�

A typical application using Chord might store replicas 
of the data associated with key at the k nodes 
succeeding the key.
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Simulation: Load Balance

Figure 8: (a) The mean and 1st and 99th percentiles of the number of keys
stored per node in a 104 node network.
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Load Balance (cont.)

Figure 8: (b) The probability density function (PDF) of the number of keys
per node. The total number of keys is 5 x 105.
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Load Balance (cont.)

Figure 9: The 1st and the 99th percentiles of the number of keys per node as
a function of virtual nodes mapped to a real node. The network has
104 real nodes and stores 106 keys.
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Path Length

Figure 10: (a) The path length as a function of network size.
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Path Length (cont.)

Figure 10: (b) The PDF of the path length in the case of a 212 node network.
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Simultaneous Node Failures

Figure 11: The fraction of lookups that fail as a function of the 
fraction of nodes that fail.
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Lookups During Stabilization

Figure 12: The fraction of lookups that fail as a function of the rate (over 
time) at which nodes fail and join. Only failures caused by 

Chord state inconsistency are included, not failures due to lost keys.
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Experimental Results

Figure 13: Lookup latency on the Internet prototype, as a function 
of the total number of nodes. Each of the ten physical sites runs 

multiple independent copies of the Chord node software.
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Future Work

�

Chord currently has no specific mechanism 
to heal partitioned rings; such rings could 
appear locally consistent to the 
stabilization procedure.

�

Instead of placing its fingers at distances that 
are all powers of 2, Chord could easily be 
changed to place its fingers at distances 
that are all integer powers of 1 + 1/d .
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Conclusion

�

The Chord protocol solves that applications need not 
to determine the node that stores a data item.

�

Given a key, it determines the node responsible for 
storing the key’s value, and does so efficiently.

�

In the steady state, in an N-node network, each node 
maintains routing information for only about O (log 
N ) other nodes,

�

and resolves all lookups via O (log N ) messages to 
other nodes.

�

Updates to the routing information for nodes leaving 
and joining require only O (log2N ) messages.

�

Chord scales well with the number of nodes, and 
answers most lookups correctly even during 
recovery.


