GAP – Practical anonymous networking

Krista Bennett, Christian Grothoff PET'03

Presented by B. Choi in cs6461 Computer Science Michigan Tech

Introduction

- Applications of anonymous communication
 - Electronic payment, voting, auction, email, and web browsing
 - One still not mentioned: File Sharing!
- What's the differences?
 - Query and reply
 - Widely spread P2P application already
- Which platform?
 - GNUnet

P2P file sharing?

- File sharing, what is it?
 - You share I share
 - Equal rights and equal responsibilities
 - Napster in 2000
- P2P in general
 - Structured
 - Unstructured
 - Hybrid
- Security and trust are the primary concern

GNUnet (my impression)

- Unstructured system
 - How to join the system
 - Well known node (distributed registry)
 - Obtain partial membership from the registry
 - Leave? when you want!
 - Query forwarding
 - Random selection of next nodes
 - Multiple forwarding at each forward
 - Time-to-live to remove loops
 - Reply
 - Encoded blocks
 - Content migration

Query and reply

- Fundamental difference from other applications
 - More query the higher chances to hit a copy
 - One-to-many (file sharing) vs. initiator-and-responder (other applications)
 - Potentially many replies with different blocks of the target file (movie or music titles)
- What needs to be anonymous?
 - Who (identity) is looking for which file?
 - Who (identity) is responding to which query?
 - Sender and receiver anonymity?

Basic decisions

- To have or not? Cover traffic
 - Not chosen as in many other P2P-based anonymity systems (Crowds, MorphMix, Tarzan?)
 - Why not?
 - Churn
 - Content migration
 - Probabilistic responding
 - Dynamism
- Adversary model
 - External passive, internal active (colluding nodes)

Main idea

- GAP: GNUnet anonymity protocols (my guess)
- For a given time window, a node
 - Creates n queries
 - Forwards m foreign queries
 - Indirect k foreign queries out of m
 - Anonymity of a node is n/(n + m k)
 - Has to maintain a routing status for each indirect-ed foreign query (how long?)
 - Forwarding/indirecting to a random selection of nodes
 - Decision based on local situations (workload)

Indirecting (not new) vs. forwarding

Thoughts on indirect/forward

- What anonymity is affected?
 - Originator?
 - Responder?
 - Forwarder?
- Why would one choose forward?
 - Better efficiency of the node
- What about the system in general?
 - Better efficiency?
 - Higher vulnerability (vs. easy content migration?)

Thoughts on hops-to-live

- Traditional hops-to-live would leak much information
- Solution: TTL --> time window to process a reply
 - TTL + the local time
 - Another hole for the adversary?
 - Delay to process exceptionally soon reply?

Measuring anonymity

Discussions

- GAP: individual node chooses whether to exchange portions of its own anonymity for its own efficiency without impacting the security of other nodes
- Statefulness!
- Any other application not studied in light of anonymity?
 - Social networks (Facebook, etc,..)
 - Skype!
 - Instant chatting?