The Pynchon Gate

L. Sassaman, B. Cohen, N. Mathewson WPES'05

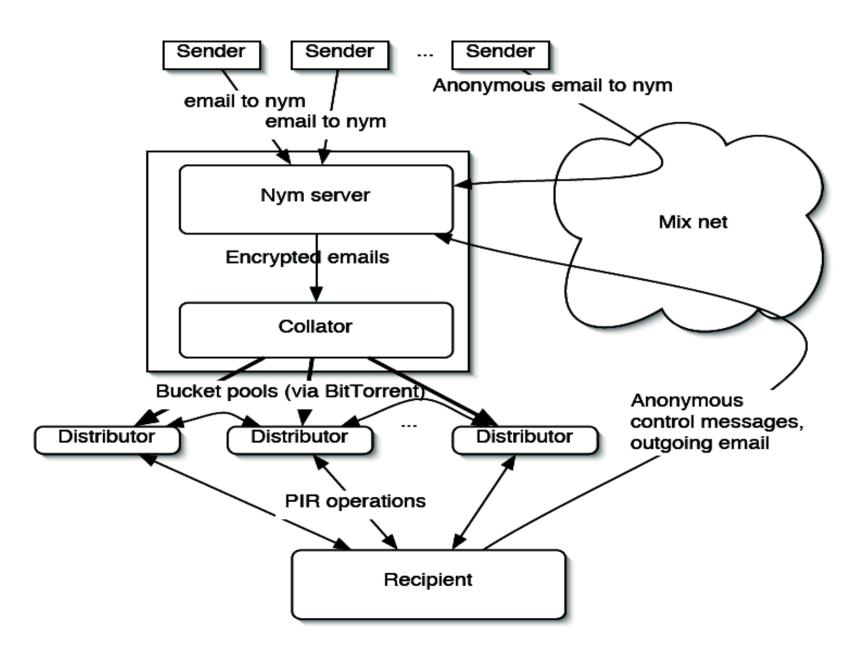
presented by B. Choi in cs6461 Computer Science Michigan Tech

Motivations

- Pseudonymous mail retrieval
 - Users register their pseudonyms with "nym" server
 - The "nym" server can be part of or external to an anonymous communication system such as BABEL, Onion routing-based Mix-nets, Tarzan, ...
 - Nym server supports receiver anonymity
 - Either vulnerable to traffic analysis attacks or require a huge amount of cover traffic
 - PIR (private information retrieval) can be a solution

Goals

- Forward message security
 - Active and passive attackers
- Deployable and usable
 - Recruite many users!

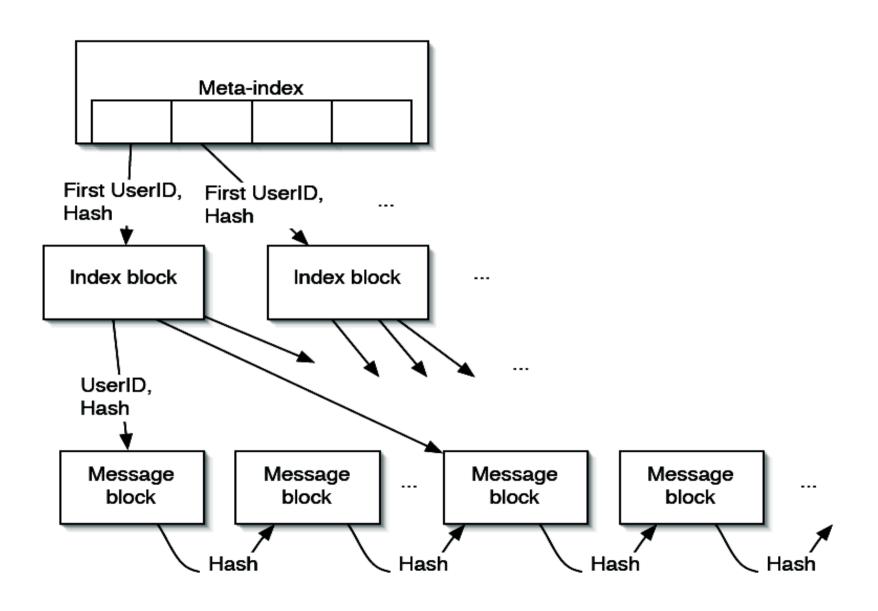

Related work

- Chaum'81: reply blocks and return addresses
 - Time gap can lead to unreliability issues
 - Pseudonym management (multiple-use of reply blocks)
- Single-use reply blocks
 - Reliability issues still there
 - Intersection attacks possible
- Network level client anonymity
 - Widespread deployment in question: onion routing

Related Work

- Network-level server anonymity
 - Onion routing: rendezvous points
 - Sender does'n need to know receiver's IP address
- Broadcast message and dead-drops
 - Send everything to everywhere
 - Scalability problem?
- Re-encryption mixes?

Pynchon Gate


Pynchon Gate Overview

- Pychon Gate: a group of servers
- Nym server receives emails for different pseudonyms
- Each cycle (24-hours) nym server passes the emails to collator.
- Collator batches them into indexed bucket pools and passes them to distributor nodes
- Distributors are independently operated (p2p)

Pynchon Gate Overview

- Pseudonym holder makes a series of requests to "k" chosen distributors
- Distributors cannot determine the pseudonym being requested
- Resistant to "k-1" collusion attacks
 - User identity to pseudonym
- Distributed-trust PIR-based message retrieval system!
 - Send everything to everyewhere

Meta-index and pool bucket

Distributors and clients

- Independently operated (P2P)
- BitTorrent! (Bran Cohen)
- Client
 - Downloads the meta-index from a randomly chosen distributor
 - Finds which index bucket to look at
 - Downloads all the blocks form randomly chosen distributors (PIR)
 - Repeats these up to a maximum volume

The PIR protocol

 Client retrieves a bucket from randomly chosen "K" distributors

Attacks

- Legal and hacking attacks
 - Dynamic key rotation
- Man-in-the-middle attack
 - TLS
- Replay attack
 - TLS
- Tagging and known-cleartext attack
 - TLS

Attacks

- Usage pattern and intersection attack
 - Hard to get usage pattern due to the cycle (24h)
 - Queries to distributors at a fixed interval
- Statistical disclosure against reply-block-based nym servers

System performance, scalability, optimizations

- Comparison to
 - Cypherpunk
 - Underhill
 - NNTP