

Protocols for Anonymity

Vitaly Shmatikov

Overview

Basic concepts of anonymity

- Chaum's MIX
- Dining cryptographers
- Knowledge-based definitions of anonymity

Probabilistic anonymity

- Onion Routing
- Crowds

Introduction to probabilistic model checking

Using a probabilistic model checker to analyze Crowds

Applications of Anonymity

Privacy

• Hide online transactions, Web browsing, etc. from intrusive governments, corporations and archivists

Digital cash Good topic for a project

- Electronic currency with properties of paper money
- Anonymous electronic voting

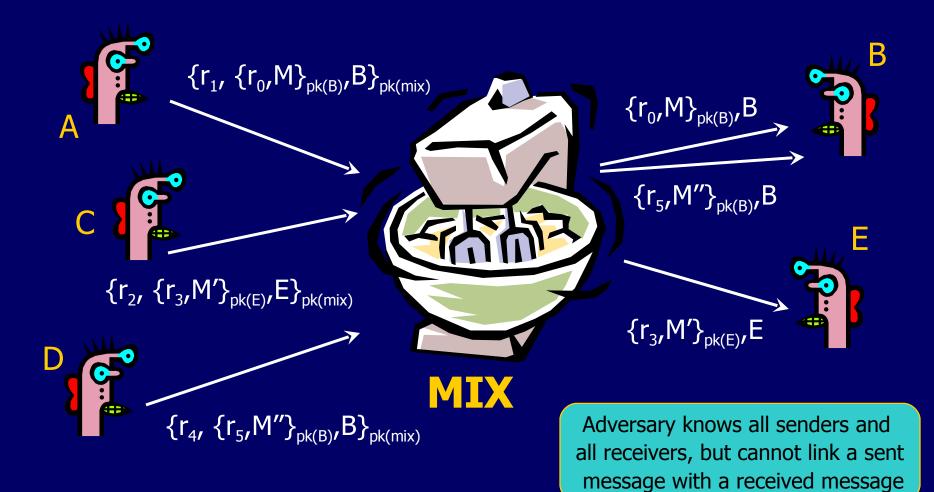
Good topic for a project

- Censorship-resistant publishing
- Untraceable electronic mail
- Crypto-anarchy
 - "Some people say `anarchy won't work'. That's not an argument against anarchy; that's an argument against work." – Bob Black

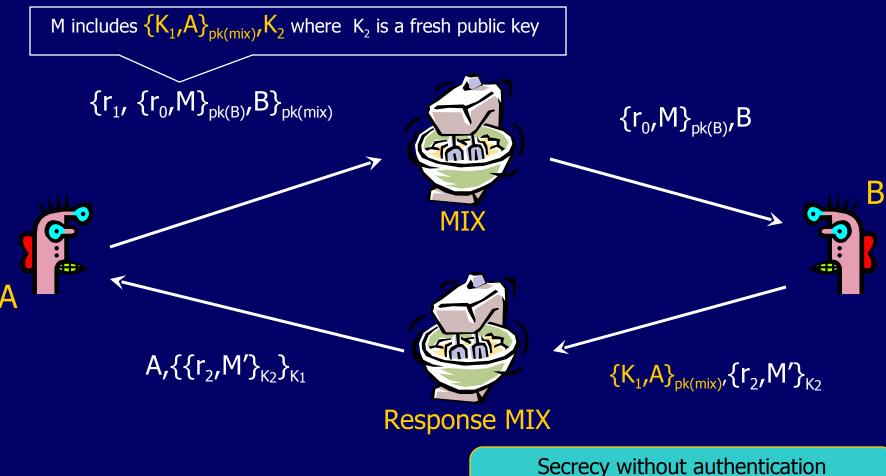
Chaum's MIX

Early proposal for anonymous email

 David Chaum. "Untraceable electronic mail, return addresses, and digital pseudonyms". Communications of the ACM, February 1981.


> Before spam, people thought anonymous email was a good idea

Public key crypto + trusted re-mailer (MIX)


- Untrusted communication medium
- Public keys used as persistent pseudonyms

 Modern anonymity systems use MIX as the basic building block

Basic MIX Design

Anonymous Return Addresses

(good for an online confession service)

MIX Cascade

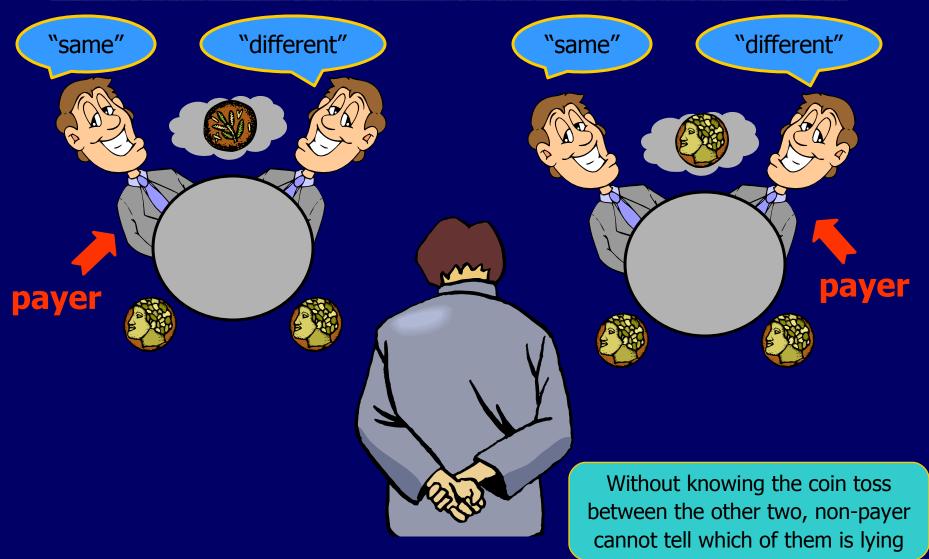
- Messages are sent through a sequence of MIXes
- Some of the mixes may be controlled by adversary, but even a single good mix guarantees anonymity
- Need traffic padding and buffering to prevent timing correlation attacks

Dining Cryptographers

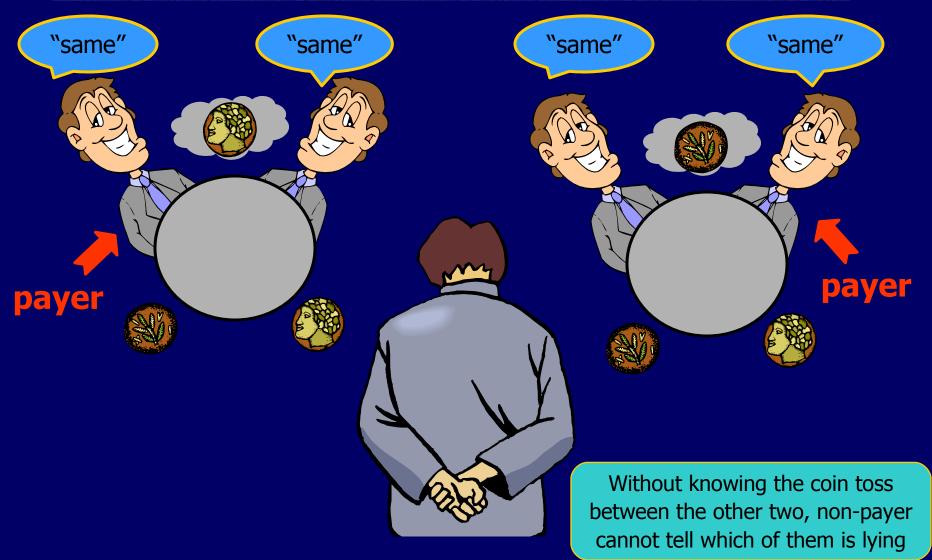
 Clever idea how to make a message public in a perfectly untraceable manner

- David Chaum. "The dining cryptographers problem: unconditional sender and recipient untraceability." Journal of Cryptology, 1988.
- Guarantees information-theoretic anonymity for message senders
 - This is an unusually strong form of security: defeats adversary who has <u>unlimited</u> computational power

Impractical, requires huge amount of randomness


In group of size N, need N random bits to send 1 bit

Three-Person DC Protocol


Three cryptographers are having dinner. Either NSA is paying for the dinner, or one of them is paying, but wishes to remain anonymous.

- 5. Each diner flips a coin and shows it to his left neighbor.
 - Every diner will see two coins: his own and his right neighbor's.
- 6. Each diner announces whether the two coins are the same. If he is the payer, he lies (says the opposite).
- Odd number of "same" ⇒ NSA is paying;
 even number of "same" ⇒ one of them is paying
 - But a non-payer cannot tell which of the other two is paying!

Non-Payer's View: Same Coins

Non-Payer's View: Different Coins

Superposed Sending

This idea generalizes to any group of size N

- For each bit of the message, every user generates 1 random bit and sends it to 1 neighbor
 - Every user learns 2 bits (his own and his neighbor's)
- Each user announces (own bit XOR neighbor's bit)
- Sender announces (own bit XOR neighbor's bit XOR message bit)
- XOR of all announcements = message bit
 - Every randomly generated bit occurs in this sum twice (and is canceled by XOR), message bit occurs once

DC-Based Anonymity is Impractical

- Requires secure pairwise channels between group members
 - Otherwise, random bits cannot be shared
- Requires massive communication overhead and large amounts of randomness
- DC-net (a group of dining cryptographers) is robust even if some members cooperate
 - Guarantees perfect anonymity for the other members
- A great protocol to analyze
 - Difficult to reason about each member's knowledge

What is Anonymity?

FBI intercepted three emails and learned that ...

Two of the emails came from the same account

Emails are not in English

The recipients are Bob386@hotmail.com, Dick Tracy and Osama Bin Laden, but it's not known who received which email

Emails were routed via Anonymizer.com

<u>Wrong question</u>: has "anonymity" been violated? <u>Right question</u>: what does FBI actually know?

Definitions of Anonymity

* "Anonymity is the state of being not identifiable within a set of subjects."

• There is no such thing as absolute anonymity

Unlinkability of action and identity

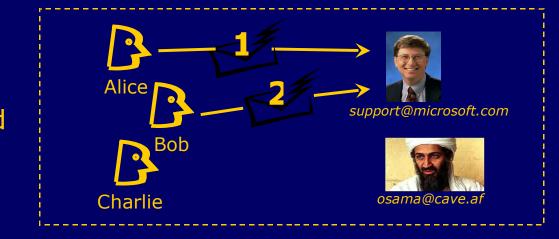
• E.g., sender and his email are no more related within the system than they are related in a-priori knowledge

Unobservability

• Any item of interest (message, event, action) is indistinguishable from any other item of interest

* "Anonymity is bullshit" - Joan Feigenbaum

Anonymity and Knowledge

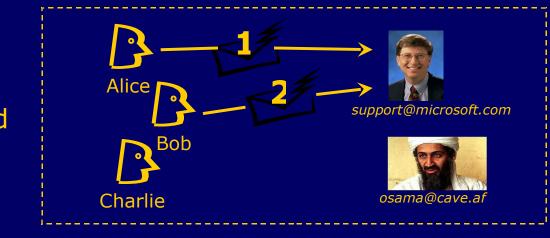

Anonymity deals with hiding information

- User's identity is hidden
- Relationship between users is hidden
- User cannot be identified within a set of suspects
- Natural way to express anonymity is to state what the adversary should not know
 - Good application for logic of knowledge
 - Not supported by conventional formalisms for security (process calculi, I/O automata, ...)

 To determine whether anonymity holds, need some representation of knowledge

k-Anonymity

What actually happened

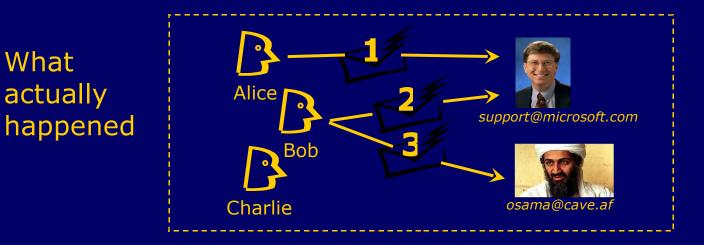


What adversary knows Sender suspects(1^{2}) = Alice or Charlie Sender suspects(2^{2}) = Bob or Charlie

2-anonymity for senders: 2 plausible senders for each message

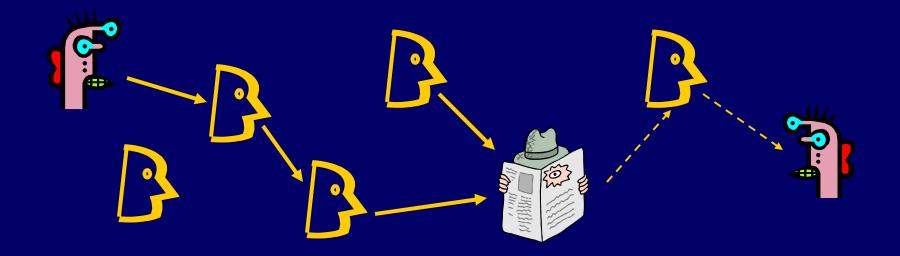
Absolute Anonymity

What actually happened



What attacker knows

Sender suspects(1^{2}) = Alice, Bob or Charlie Sender suspects(2^{2}) = Alice, Bob or Charlie


absolute sender anonymity: every agent is a plausible sender for every message

Identities Are Not Enough

What attacker knows Sender suspects (2^{4}) = Alice, Bob or Charlie Sender suspects (2^{4}) = Alice, Bob or Charlie Sender (2^{4}) = Sender (3^{4}) We need to be able to express this knowledge

Anonymity via Random Routing

Hide message source by routing it randomly

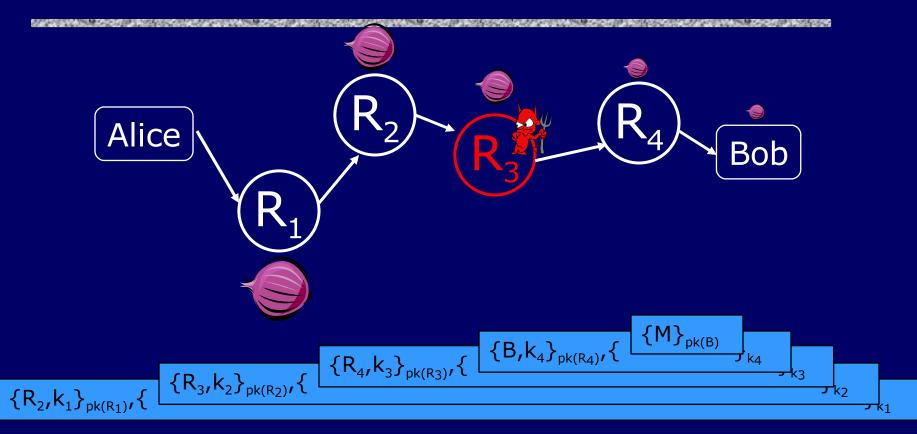
 Popular technique: Crowds, Freenet, Onion Routing

 Routers don't know for sure if the apparent source of a message is the true sender or another router

• Only secure against <u>local</u> attackers!

Onion Routing

[Reed, Syverson, Goldschlag '97]


 $\begin{array}{c|c} R & R & R_{4} & R_{7} \\ \hline R & R_{2} & R_{4} & R_{7} \\ \hline Alice & R_{2} & R_{7} & R_{7} \\ \hline R & R_{7} & R_{7} & R_{7} & R_{7} \\ \hline R & R_{7} & R_{7} & R_{7} & R_{7} \\ \hline R & R_{7} & R_{7} & R_{7} & R_{7} \\ \hline R & R_{7} & R_{7} & R_{7} & R_{7} \\ \hline R & R_{7} & R_{7} & R_{7} & R_{7} & R_{7} \\ \hline R & R_{7} & R_{7} & R_{7} & R_{7} & R_{7} \\ \hline R & R_{7} & R_{7} & R_{$

Sender chooses a random sequence of routers

- Some routers are honest, some hostile
- Sender controls the length of the path
- Similar to a MIX cascade

Goal: hostile routers shouldn't learn that Alice is talking to Bob

The Onion

Routing info for each link encrypted with router's public key
Each router learns only the identity of the next router

Crowds System

[Reiter, Rubin '98]

Routers form a random path when establishing connection

• In onion routing, random path is chosen in advance by sender

After receiving a message, honest router flips a biased coin

- With probability P_f randomly selects next router and forwards msg
- With probability 1-P_f sends directly to the recipient

Probabilistic Notions of Anonymity

Beyond suspicion

• The observed source of the message is no more likely to be the true sender than anybody else

Probable innocence

Possible innocence

 Probability that the observed source of the message is the true sender is less than 50%

Guaranteed by Crowds if there are sufficiently many honest routers: $N_{good} + N_{bad} \ge p_f/(p_f-0.5) \cdot (N_{bad} + 1)$

 Non-trivial probability that the observed source of the message is <u>not</u> the true sender

A Couple of Issues

Is probable innocence enough? $\int_{1\%} \int_{1\%} \int_{1$

Maybe Ok for "plausible deniability"

Multiple-paths vulnerability

- Can attacker relate multiple paths from same sender?
 - E.g., browsing the same website at the same time of day
- Each new path gives attacker a new observation
- Can't keep paths static since members join and leave

Anonymity Bibliography

Free Haven project (anonymous distributed data storage) has an excellent anonymity bibliography

http://www.freehaven.net/anonbib/

Many anonymity systems in various stages of deployment

- Mixminion
 - http://www.mixminion.net
- Mixmaster
 - http://mixmaster.sourceforge.net
- Anonymizer
 - http://www.anonymizer.com
- Zero-Knowledge Systems
 - http://www.zeroknowledge.com

Cypherpunks

- http://www.csua.berkeley.edu/cypherpunks/Home.html
- Assorted rants on crypto-anarchy