Dependent Link Padding Algorithms for Low Latency Anonymity Systems

W. Wang, M. Motani, V. Srinivasan CCS 2008

Presented by B. Choi cs6461 at MTU

Motivation

- Low latency anonymity systems are vulnerable to traffic analysis attacks
- One way to thwart such an attack is to use dummy traffic
- Understanding of the cost and effectiveness is low
- Where to start?

Things to think ...

- Scope: entire network, tier-1 AS, tier-2 AS, tier-3 AS, ...
 - Tarzan?
- Effectiveness of dummy traffic
 - Linkability from a suspect input to any suspect output to be:
 - Minimized?
 - Randomized
 - Equalized?
- Cost: genuine traffic vs. dummy traffic

Background

- Independent link padding
 - Scope: one hop
 - Output pattern: pre-determined regardless of input
 - Straightforward output patterns: constant, exponential (Poisson)
- Dependent link padding
 - Scope: one hop
 - Output pattern: determined online depending on input
 - How to produce output with given input?

Intuition

- Independent link padding:
 - Very strong resistance against traffic analysis
 - Low bandwidth utilization
- Dependent link padding
 - Maybe strong enough to resist traffic analysis
 - Flexible bandwidth utilization
 - Can there be a good framework on DLP?

Assumptions

- Input flows are about of the same rate in Poisson
- All packets belong to a flow (link) are sent to the same output flow (link)
- Single anonymity server (mix) with a strict delay bound
- The mix does not drop any packet
- All output links show the same output to maximize the anonymity

Mix

Matching packets

Proposed DLP algorithm

Dependent Link Padding Algorithm

Parameters: Packet arrival time t_{ij} for all flows $f_i \in \mathcal{F}$ **Output:** A matched schedule $S(\mathcal{F})$ for all flows $f_i \in \mathcal{F}$

01: Take a new packet P_{ij} according to the arrival sequence.

02: if there is an unused token with $t_s \geq t_{ij}$ for f_i

03: Schedule P_{ij} at t_s

04: Mark the token as used for f_i

05: **else**

06: Add a new token at $t'_s = t_{ij} + \Delta$ in $S(\mathcal{F})$, which can be used by all flows in \mathcal{F}

O7: Schedule P_{ij} at time t'_s and mark the token as used for f_i .

08: **endif**

09: Go to step 01 until no more packet arrives.

Example of output

Claims

- The dummy traffic is minimized (max efficiency)
- Sending rate proportional to log(m)
 - M: the number of input flows
- Multi-hop: upper-bounded delay x hops

•

Experiment on the sending rate

Experiment on delay bound

Comparison with ILPs

DLP Heuristic Algorithm

Parameters: Packet arrival time t_{ij} for all flows $f_i \in \mathcal{F}$ Utility threshold U.

Output: A sending schedule with utility of at least U

01: Put new packet P_{ij} into a FIFO queue for the flow f_i

02: Repeat step 01 until there is a packet P has been in the queue for Δ time units

03: if more than $U|\mathcal{F}|$ queues are non-empty

04: Add a new token and send one packet for each flow immediately

05: **else**

06: Drop the packet P.

07: **endif**

08: Go to step 01 until no more packet arrives.

Real Traffic (2003)

Packet drop rates

Drawback of DLP

Drawback of DLP

