Anonymity Systems and Traffic Analysis

Presented by Chi Bun Chan
on April 15, 2004
Outline

• Brief description of some anonymity system designs
• Summary of several traffic analysis techniques
Needs for Anonymity

• Hiding Identity
 – Sensitive issues, political reasons, secret operations
 – Freedom of speech
• Privacy
 – Human right, Corporation benefits
 – Against surveillance, private information tracking and profiling
• Security
 – Hiding actual servers, existence of virtual private network
 – Transfer or “load-balance” attacks to some other relays (?)
• Anonymity offers certain degree of innocence or deniability to an action. Is it good or bad?
Relevant Applications

• Anonymizing bulletin board and email
• Electronic voting
• Incident reporting
• Anonymous e-commerce
• Private information retrieval
We do have …

• Data Confidentiality
 – Encryption schemes (symmetric, public-key)
• Data Integrity
 – Secure Hashing, HMAC
• Authentication
 – Digital signature, certificate, Kerberos

• Data confidentiality + data integrity + authentication □ not enough to guarantee anonymity
• Trivial example: If there is only one guy sending a message to another guy, encryption doesn’t help.
Anonymity Metrics in Communication

• Basic metrics:
 – **Sender anonymity** - who sends what
 – **Receiver anonymity** - who receives what
 – **Unlinkability** (relationship anonymity) - who talks to whom

• Providing sender anonymity and unlinkability are desirable enough for common Internet activities

• Goals:
 – The identities of the communicating parties should stay anonymous to the outside community
 – Even the parties in communication may not know each other’s real identity
Anonymity Systems
Anonymity Set

- Hiding one’s action in many others’ actions
- **Anonymity set** - a group of users in which every one is equal-probable to be associated with a given action. Every one has certain degree of innocence or deniability to an action.
MIX-based Systems

• Concept of using relay servers (MIXes) for anonymous communication
• Introduced by David Chaum (1981)
• Goals
 – Sender anonymity
 – Unlinkability against global eavesdroppers
• Idea: Messages from sender “look” (contents, time) differently than messages to recipient
MIX - Basic Operations

• A mix is a **store-and-forward** relay
• Batching
 – collect fixed-length messages from different sources
 – accumulate a **batch** of \(n \) messages
• Mixing
 – **cryptographically transform** collected messages
 – forwarding messages to their recipients in **random order**
MIX - Example

- Each mix has a public key
- Each sender encrypts its message (with randomness) using public key of mix

1. Collects messages
2. Discards repeated messages
3. Decrypts messages and accumulates in batch
4. Reorders messages in batch and delivers
MIX - Variants

- Single mix (also single point of trust, attack and failure)
- Mix cascade
- Mix network
- Different ways of batch and mix operations
MIX (cont.)

- Traditional designs are **message-based**
- Usually **high latency** and **asynchronous** due to batch and mix operations
 - may be acceptable for applications like email
 - frustrating user experience in low latency or interactive applications: web browsing, instant messaging, SSH
- Alternatives: **circuit-based** designs
Crowds

- Anonymous web browsing
- Dynamic collecting users (*jondo*) in a group (*crowd*)
- Member list maintained in a central server (*blender*)
- Idea: Who is the initiator?
Crowd (cont.)

- Initiator submits request to a **random member**
- Upon receiving a request, a member either:
 - forwards to another random member \((p = p_f)\)
 - submits to end server \((p = 1 - p_f)\)
- a random path is created during the first request, subsequent requests use the same path; server replies using the same path but in reserve order
- **link encryption** of messages with a **shared key** known to all members
Onion Routing

• A (small) fixed core set of relays
 – Core Onion Router (COR)
• Designed to support low-latency service
• Initiator defines an anonymous path for a connection through an “onion”
• An onion is a layered structure (recursively encrypted using public keys of CORs) that defines:
 – path of a connection through CORs
 – properties of the connection at each point, e.g. cryptographic algorithms, symmetric keys
Onion Routing (cont.)

- Initiator’s onion proxy (OP)
 - connects to COR
 - initiates a random circuit using an onion
 - converts data to **fixed size cells**
 - performs **layered encryption**, one per router

- Circuit-based multi-hop forward
 - Each COR decrypts and removes a layer of received cells, then forwards to next COR

```
Layered onion: { R1 { R2 { R3 { R4 { X } } } } } }
```
Tarzan & MorphMix

• Similar to Onion routing, Mix-net approach but extended to peer-to-peer environment
 – Again, layered/nested encryption with multi-hop forwarding

• All peers are potential message originators and relays
 – More potential relays than a small fixed core set
 – More scalable
 – Hide one’s action in a large dynamic set of users

• Tarzan targets at network layer while MorphMix runs at application layer
Tarzan & MorphMix (cont.)

• Larger dynamic set of unreliable nodes

• More efforts to defense against colluding nodes (dishonest or adversary controlled)
 – Restricted peer-selection in Tarzan
 – Collusion detection mechanism in MorphMix
Traffic Analysis
Attacks on Anonymity Systems

• Degrading the quality of anonymity service
 – Break sender/receiver anonymity, unlinkability
 – Control anonymity to certain level
 – Traffic analysis, traffic confirmation

• Degrading the utilization of anonymity system
 – Decrease the performance, reliability and availability of system, so as to drive users not using the service
 – Denial-of-Service attacks
Traffic Analysis

• If one’s interested in breaking the anonymity ...
• Based on features in communication traffic, one may infer
 – who’s the initiator NO sender anonymity
 – who’s the responder NO receiver anonymity
 – an initiator-responder mapping NO unlinkability
Types of Adversary

- **Passive**: eavesdrop traffic
- **Active**: able to observe, delay, alter and drop messages in the system
- **Local**: able to observe traffic to/form user’s network link, within LAN
- **Global**: able to observe effectively large amount or all network links, across LAN boundaries
- **Internal**: participants in the anonymity system, adversary-operated nodes
- **External**: not participate in the protocol but may be able to observe, inject or modify traffic in the system
Common Vulnerabilities

• **Message features**
 – distinguishable contents, size

• **Communication patterns**
 – user online/offline period
 – send-receive sequence
 – message frequencies, e.g. burst stream

• **Properties/constraints in anonymity systems**
 – low-latency requirement
 – link capacity and traffic shaping
Attacks on Message Features

• If a message itself reveals one’s identity or more, anonymity is defeated regardless of the strength of an anonymity system!

• Message features
 – size, format, writing style ..., etc

• Message size
 – Varieties of message sizes may help linking a message to some application or sender
 – Fixed by constant-size message padding
Distinguishable Message Contents

• Message contents
 – may expose user information or the route of a message
 – e.g. host information, Referer, User-Agent fields in HTTP header

• Active adversary can perform **message tagging attack**
 – Alter bits in message header/payload
 – Recognize altered messages to exploit the route

• Solutions
 – Proper message transformation: e.g. encryption
 – Removal of distinguishable information: e.g. Privoxy (privacy enhancing proxy)
Packet Counting Attack

- Count the number of messages entering a node and leaving an anonymous tunnel
- Constant link padding may help:
 - Two nodes exchange a constant number of same-sized packets per time unit
 - Generate dummy traffic on idle or lightly loaded links
 - Costly
 - Still vulnerable to other attacks, e.g. latency attacks
Clogging Attack

• Observe traffic between a certain last node C and end receiver R
• Create a route through a set of suspected nodes
• Clog the route with high volume of traffic
• Decrease in throughput from C to R may indicate at least one node in the suspected route belongs to a route containing C
• Continue with different sets of nodes until a route is to R is revealed
Intersection Attacks

- Communication pattern
 - Users join and leave the system from time to time
 - Users are **not active** in communication all the time
 - Some receivers receive messages after some senders transmit messages

- Intersecting sets of possible senders over different time periods → anonymity set shrinks

- Short term vs Long term
Partition Attack on Client Knowledge

- Render **inconsistent views** of anonymity system on clients
 - e.g. member list on directory server
- Identify clients who always choose a particular subset of neighbors
Attacks on Endpoints

- Sometimes referred as *traffic confirmation* rather than traffic analysis
- Suppose an adversary controls the first and the last node of a route
- Observe the traffic entering the first node and leaving the last node
Attacks on Endpoints (cont.)

- Correlate the timings of a message entering the first node with those coming out of the last node
 - Packet counting attack, Timing attacks, Message frequency attack
- An adversary may be able to:
 - figure out some input message to output message mappings
 - rule out some potential senders or receivers from the anonymity sets
 - link a particular pair of sender and receiver
- An active adversary may increase the chance of success and speedup the analysis by delaying and dropping messages, flooding several nodes and links
Node Flushing Attack

- Intended to defeat MIX-based systems
- Flooding attack, (n-1) attack
- Flood a node with identifiable fake messages but leave a room for a single message to be traced
- Link user’s input message with messages leaving the node
Trickle Attack

- Trickle, flushing attack - referred as blending attack
- Suppose a MIX accumulates and emits messages in rounds
- An active attacker holds a target message until the mix emits a batch of messages
- He then submits target message to mix while blocking other incoming messages
- Only the target message is emitted in the next round

- Requires control over traffic flow - practical to launch?
More Attacks …

• The “Sting” Attack
• The “Send n’ Seek” Attack
• Active Attacks Exploiting User Reactions
• Denial of Service Attack
• Social Engineering

• Alternative attack goal:
 – Drive users to less secure anonymity systems or not using anonymity service at all
Open Questions

• More users (relays) means better?
 – P2P approaches - more scalable?
 – high dynamicity can be good or bad
 – prevent adversaries from signing up many colluding nodes

• Every traffic should look the same?
 – cover traffic? Constant link padding?
 – effectiveness and performance

• It’s a matter of tradeoff!
References

References

- **Onion Routing**. http://www.onion-router.net/