Anonymity Systems and Traffic Analysis

Presented by Chi Bun Chan on April 15, 2004

Outline

- Brief description of some anonymity system designs
- Summary of several traffic analysis techniques

Needs for Anonymity

- Hiding Identity
 - Sensitive issues, political reasons, secret operations
 - Freedom of speech
- Privacy
 - Human right, Corporation benefits
 - Against surveillance, private information tracking and profiling
- Security
 - Hiding actual servers, existence of virtual private network
 - Transfer or "load-balance" attacks to some other relays (?)
- Anonymity offers certain degree of innocence or deniability to an action. Is it good or bad?

Relevant Applications

- Anonymizing bulletin board and email
- Electronic voting
- Incident reporting
- Anonymous e-commerce
- Private information retrieval

We do have ...

- Data Confidentiality
 - Encryption schemes (symmetric, public-key)
- Data Integrity
 - Secure Hashing, HMAC
- Authentication
 - Digital signature, certificate, Kerberos
- Data confidentiality + data integrity + authentication

 not enough to guarantee anonymity
- Trivial example: If there is only one guy sending a message to another guy, encryption doesn't help.

Anonymity Metrics in Communication

- Basic metrics:
 - Sender anonymity who sends what
 - Receiver anonymity who receives what
 - Unlinkability (relationship anonymity) who talks to whom
- Providing sender anonymity and unlinkability are desirable enough for common Internet activities
- Goals:
 - The identities of the communicating parties should stay anonymous to the outside community
 - Even the parties in communication may not know each other's real identity

Anonymity Systems

Anonymity Set

- Hiding one's action in many others' actions
- Anonymity set a group of users in which every one is equal-probable to be associated with a given action

 every one has certain degree of innocence or deniability to an action

MIX-based Systems

- Concept of using relay servers (MIXes) for anonymous communication
- Introduced by David Chaum (1981)
- Goals
 - Sender anonymity
 - Unlinkability against global eavesdroppers
- Idea: Messages from sender "look" (contents, time) differently than messages to recipient

MIX - Basic Operations

- A mix is a store-and-forward relay
- Batching
 - collect fixed-length messages from different sources
 - accumulate a batch of n messages
- Mixing
 - cryptographically transform collected messages
 - forwarding messages to their recipients in random order

MIX - Example

- Each mix has a public key
- Each sender encrypts its message (with randomness) using public key of mix

MIX - Variants

- Single mix (also single point of trust, attack and failure)
- Mix cascade
- Mix network
- Different ways of batch and mix operations

MIX (cont.)

- Traditional designs are message-based
- Usually high latency and asynchronous due to batch and mix operations
 - may be acceptable for applications like email
 - frustrating user experience in low latency or interactive applications: web browsing, instant messaging, SSH
- Alternatives: circuit-based designs

Crowds

- Anonymous web browsing
- Dynamic collecting users (jondo) in a group (crowd)
- Member list maintained in a central server (blender)
- Idea: Who is the initiator?

Crowd (cont.)

- Initiator submits request to a random member
- Upon receiving a request, a member either:
 - forwards to another random member $(p = p_f)$
 - submits to end server ($p = 1 p_f$)
- a random path is created during the first request, subsequent requests use the same path; server replies using the same path but in reserve order
- link encryption of messages with a shared key known to all members

Onion Routing

- A (small) fixed core set of relays
 - Core Onion Router (COR)
- Designed to support low-latency service
- Initiator defines an anonymous path for a connection through an "onion"
- An onion is a layered structure (recursively encrypted using public keys of CORs) that defines:
 - path of a connection through CORs
 - properties of the connection at each point, e.g. cryptographic algorithms, symmetric keys

Onion Routing (cont.)

- Initiator's onion proxy (OP)
 - connects to COR
 - initiates a random circuit using an onion
 - converts data to fixed size cells
 - performs layered encryption, one per router
- Circuit-based multi-hop forward
 - Each COR decrypts and removes a layer of received cells, then forwards to next COR

Tarzan & MorphMix

- Similar to Onion routing, Mix-net approach but extended to peer-to-peer environment
 - Again, layered/nested encryption with multi-hop forwarding
- All peers are potential message originators and relays
 - More potential relays than a small fixed core set
 - More scalable
 - Hide one's action in a large dynamic set of users
- Tarzan targets at network layer while MorphMix runs at application layer

Tarzan & MorphMix (cont.)

- Larger dynamic set of unreliable nodes
- More efforts to defense against colluding nodes (dishonest or adversary controlled)
 - Restricted peer-selection in Tarzan
 - Collusion detection mechanism in MorphMix

Traffic Analysis

Attacks on Anonymity Systems

- Degrading the quality of anonymity service
 - Break sender/receiver anonymity, unlinkability
 - Control anonymity to certain level
 - Traffic analysis, traffic confirmation
- Degrading the utilization of anonymity system
 - Decrease the performance, reliability and availability of system, so as to drive users not using the service
 - Denial-of-Service attacks

Traffic Analysis

- If one's interested in breaking the anonymity ...
- Based on features in communication traffic, one may infer
 - who's the initiator
 NO sender anonymity
 - who's the responder
 I NO receiver anonymity
 - an initiator-responder mapping ☐ NO unlinkability

Types of Adversary

- Passive: eavesdrop traffic
- Active: able to observe, delay, alter and drop messages in the system
- Local: able to observe traffic to/form user's network link, within LAN
- Global: able to observe effectively large amount or all network links, across LAN boundaries
- Internal: participants in the anonymity system, adversary-operated nodes
- External: not participate in the protocol but may be able to observe, inject or modify traffic in the system

Common Vulnerabilities

Message features

distinguishable contents, size

Communication patterns

- user online/offline period
- send-receive sequence
- message frequencies, e.g. burst stream

Properties/constraints in anonymity systems

- low-latency requirement
- link capacity and traffic shaping

Attacks on Message Features

 If a message itself reveals one's identity or more, anonymity is defeated regardless of the strength of an anonymity system!

Message features

- size, format, writing style ..., etc
- Message size
 - Varieties of message sizes may help linking a message to some application or sender
 - Fixed by constant-size message padding

Distinguishable Message Contents

- Message contents
 - may expose user information or the route of a message
 - e.g. host information, Referer, User-Agent fields in HTTP header
- Active adversary can perform message tagging attack
 - Alter bits in message header/payload
 - Recognize altered messages to exploit the route
- Solutions
 - Proper message transformation: e.g. encryption
 - Removal of distinguishable information: e.g. Privoxy (privacy enhancing proxy)

Packet Counting Attack

- Count the number of messages entering a node and leaving an anonymous tunnel
- Constant link padding may help:
 - Two nodes exchange a constant number of same-sized packets per time unit
 - Generate dummy traffic on idle or lightly loaded links
 - Costly
 - Still vulnerable to other attacks, e.g. latency attacks

Clogging Attack

- Observe traffic between a certain last node C and end receiver R
- Create a route through a set of suspected nodes
- Clog the route with high volume of traffic
- Decrease in throughput from C to R may indicate at least one node in the suspected route belongs to a route containing C
- Continue with different sets of nodes until a route is to R
 is revealed

Intersection Attacks

- Communication pattern
 - Users join and leave the system from time to time
 - Users are not active in communication all the time
 - Some receivers receive messages after some senders transmit messages
- Intersecting sets of possible senders over different time periods

 anonymity set shrinks
- Short term vs Long term

Partition Attack on Client Knowledge

- Render inconsistent views of anonymity system on clients
 - e.g. member list on directory server
- Identify clients who always choose a particular subset of neighbors

Attacks on Endpoints

- Sometimes referred as traffic confirmation rather than traffic analysis
- Suppose an adversary controls the first and the last node of a route
- Observe the traffic entering the first node and leaving the last node

Attacks on Endpoints (cont.)

- Correlate the timings of a message entering the first node with those coming out of the last node
 - Packet counting attack, Timing attacks, Message frequency attack
- An adversary may be able to:
 - figure out some input message to output message mappings
 - rule out some potential senders or receivers from the anonymity sets
 - link a particular pair of sender and receiver
- An active adversary may increase the chance of success and speedup the analysis by delaying and dropping messages, flooding several nodes and links

Node Flushing Attack

- Intended to defeat MIX-based systems
- Flooding attack, (n-1) attack
- Flood a node with identifiable fake messages but leave a room for a single message to be traced

Link user's input message with messages leaving the

node

Trickle Attack

- Trickle, flushing attack referred as blending attack
- Suppose a MIX accumulates and emits messages in rounds
- An active attacker holds a target message until the mix emits a batch of messages
- He then submits target message to mix while blocking other incoming messages
- Only the target message is emitted in the next round
- Requires control over traffic flow practical to launch?

More Attacks

- The "Sting" Attack
- The "Send n' Seek" Attack
- Active Attacks Exploiting User Reactions
- Denial of Service Attack
- Social Engineering
- Alternative attack goal:
 - Drive users to less secure anonymity systems or not using anonymity service at all

Open Questions

- More users (relays) means better?
 - P2P approaches more scalable?
 - high dynamicity can be good or bad
 - prevent adversaries from signing up many colluding nodes
- Every traffic should look the same?
 - cover traffic? Constant link padding?
 - effectiveness and performance
- It's a matter of tradeoff!

References

- Jean-François Raymond. Traffic Analysis: Protocols, Attacks,
 Design Issues, and Open Problems. In the Proceedings of
 Designing Privacy Enhancing Technologies: Workshop on Design
 Issues in Anonymity and Unobservability, July 2000, pages 10-29.
- Adam Back, Ulf Möller, and Anton Stiglic. Traffic Analysis Attacks and Trade-Offs in Anonymity Providing Systems. In the Proceedings of Information Hiding Workshop (IH 2001), April 2001, pages 245-257.
- Michael Reiter and Aviel Rubin. Crowds: Anonymity for Web Transactions. In ACM Transactions on Information and System Security, June 1998

References

- Michael J. Freedman and Robert Morris. Tarzan: A Peer-to-Peer Anonymizing Network Layer. In the Proceedings of the 9th ACM Conference on Computer and Communications Security (CCS 2002), Washington, DC, November 2002.
- Marc Rennhard and Bernhard Plattner. Introducing MorphMix:
 Peer-to-Peer based Anonymous Internet Usage with Collusion
 Detection. In the Proceedings of the Workshop on Privacy in the Electronic Society (WPES 2002), Washington, DC, USA, November 2002.
- Onion Routing. http://www.onion-router.net/