Anonymous Connections and Onion Routing

David Goldschlag, Michael Reed, and Paul Syverson Center for High Assurance Computer Systems Naval Research Laboratory Washington, D.C.

Who is Talking to Whom? In a Public Network: Packet headers identify recipients Packet routes can be tracked **Public Network** Responder Initiator **Encryption does** *not* hide routing information.

Traffic Analysis Reveals Identities

Who is talking to whom may be confidential or private:
Who is searching a public database?
Which companies are collaborating?
Who are you talking to via e-mail?
Where do you shop on-line?

Objective

Design an infrastructure that Makes traffic analysis hard Separates identification from routing Is reusable across many applications Our goal is *anonymous connections*, not anonymous communication. An infrastructure, Onion Routing, has been implemented.

Traffic Analysis

Focus on three components:
Hide routing headers
Complicate statistical inferences
Balance load

Onion Routing: Network Infrastructure

Anonymous connections are
Routed through Chaum Mixes
Multiplexed between Mixes

Initiator

--- Onion Routers

Responder

Onion Routing: Proxy Interface

Proxies interface between Applications and the Network Infrastructure.

The *Basic Configuration*: Sensitive sites control Onion Routing Proxies (which also function as intermediate Onion Routers).

Applications

Many applications can use Proxies: • Web browsing • Remote login • e-mail • File transfer Threat Model: Active and Passive Attacks

All traffic is visible
All traffic can be modified
Onion Routers may be compromised
Compromised Onion Routers may cooperate
Timing coincidences

Using Onion Routing

Four Steps:
Define the route
Construct the anonymous connection
Move data through the connection
Destroy the anonymous connection

Constructing the Anonymous Connection

The Onion moves between Onion Routers.

Moving Data Forward

- The Initiator's Onion Routing Proxy repeatedly crypts the data.
- Each Onion Router removes one layer of cryption.
- The Responder's Onion Routing Proxy forwards the plaintext to the Responder.

Moving Data Backward

- This is just the reverse of sending data forward.
- Each Onion Router adds one layer of cryption.
- The Initiator's Onion Routing Proxy removes the layers of cryption and forwards the plaintext to the Initiator.

Destroying the Anonymous Connection

Destroy Messages
are forwarded along the connection
cleaning up tables along the way

Reply Onions

(Z Connect to Y, ?)

An Initiator's Onion Routing Proxy can create a Reply Onion that defines a route back to him.

(Y Connect to X,)

(X Connect to W, 7)

Implementation

Working Onion Routing prototype. Proxies for: Web browsing (HTTP) Remote login (RLOGIN) e-mail (SMTP) File transfer (FTP) and anonymizing Web and mail proxies.

Performance

5 Onion Routers running on a single UltraSparc 2270.

Connection setup: 0.5 second cryptographic overhead. (This cost can be amortized by using sockets for longer connections.)

Vulnerabilities

Timing Coincidences: Do two parties often open new connections at the same time? This is not detectable in communication between two sensitive sites. **Traffic Analysis: Load Balancing** Tradeoff between security and cost Is this feasible on the Internet?

Onion Routing Network Configurations

The *Basic Configuration* Hierarchical like the Internet

Customer--ISP Model
User makes onions on his PC
PC routes through ISP's onion router
Even the ISP cannot determine the PC's destination.

Other Applications

IRC: Two parties make anonymous connections to an IRC server, which mates the two connections.
Noither party bac to truct the other

Neither party has to trust the other.

Hide Location of Cellular Phones

To Make a Call:

Phone makes anonymous connection to billing station through local base station. Phone identifies itself to billing station which completes the call. To Call a Cellular Phone: • Page the phone over a wide region. **Billing Station** Side Benefit: ery low standby power consumption.

Private Location Tracking

Active Badges

Competing Goals: Track users's location. But, keep location information private. Home station tracks location:

- Active badge contacts room sensor.
- Room sensor queries database for a reply onion over an anonymous connection.
- Sensor contacts home station using reply onion.
- Home station updates database over an anonymous connection.

Discussion

 Efficiency: Cryptographic overhead is no worse than link encryption between routers.

 Onion Routing Proxies must also be intermediate Onion Routers.

Cryptographic Overhead

Along an (*n*+1)-Node route: • Data is encrypted *n* times Data is decrypted *n* times But, pre-crypting provides (for free): Link encryption End to end encryption • Data hiding: the same data looks *different* to each node

Related Work

Chaum's Mixes Babel: Mixes for e-mail Anonymous ISDN: Mixes in a local ISDN switch

Conclusion

- To be effective, Onion Routing must be widely used.
- Onion Routing supports a wide variety of unmodified services using proxies.
- Anonymity is placed at the application layer.
- The goal here is anonymous routing, not anonymity.

References

http://www.itd.nrl.navy.mil/ITD/5540/ projects/onion-routing

Who would like to run an Onion Router?