The Economics of Mass Surveillance and The Questionable Value of Anonymous Communications

George Danezis and Bettina Wittneben

Presented By: Warren Powers

Overview

- Introduction
- Model
- Obtaining network information
- Surveillance
- Discussion of effectiveness
- Conclusion

Introduction

- Participants belong to clubs
 - If one participant is under surveillance, all information shared and membership is revealed
- Questions
 - How many need to be under surveillance?
 - Who do we put under surveillance?
 - How does anonymity affect target selection?

Model

- People and spaces (or clubs)
- Relationships
 - When people belong to spaces
 - No links between people
 - Relationships have strength
 - Symbolizes degree of association between person and space
- Graph from set of people to set of spaces.

Extracting the Network fromData

- Used data from mailing list archives
- Mapped email address to space
- Mapped email to person
- Relations were created from messages to lists

Effectiveness of Partial Surveillance

- What is revealed?
 - Observing one member of a space
 - All relationships associated with that space
- Choice of target
 - Those with highest degree
 - Among spaces not under surveillance
 - Repeated as budget allows

Data Uncovered – Full Info

Spaces, People and Relations Uncovered - Full Information

Partial Information

- We can monitor volume of messages
 - Not degree or correspondents
- Target selection more difficult
 - Lower return on investment

Data Uncovered – Partial Info

Discussion

- The first model could represent no anonymity
 - Can obtain much information with little surveillance
- The second model represents some anonymity
 - No cover traffic
- Anonymized communication is helpful but not perfect

Diminishing Returns

- Initial investment provides great return
- As budget is increased, marginal returns decrease.
 - Cost per unit of intelligence rapidly increases
- Useful information may be very costly
- Privacy violation is high

Interception Figures

- Warrants issued vs. number under surveillance
- UK population
 - Full information graph used
 - Formula for those under surveillance
 - (0.5/0.01)X
 - (0.5/0.01)1849 = 92000 people
 - Info on 50 people revealed for each one monitored

Failure of Adaptive Target Selection

- Adaptive strategies are inferior to volume selection
- Adaptive Strategies
 - High known degree
 - Likely to have links to undiscovered spaces
 - Structural equivalence
 - High know degree and few nodes sharing its position

Strategy Comparison

People Uncovered – Two Adaptive Strategies

Target Selection for Disruption

- What if goal is to disrupt network?
 - Remove nodes with highest degree
 - Remove nodes with high volume
- Selection results not very different
 - Need to remove twice as many using volume info.

Size of largest component and node deletion

Conclusion

- Information is leaked through third parties
- A small carefully selected set of nodes reveal a large amount of information
- Unlinkablility is not sufficient, unobservability is necessary
- Surveillance will violate privacy of innocent parties
- Finding guilty parties will be costly