Tarzan:

A Peer-to-Peer Anonymizing Network Layer

Michael J. Freedman, NYU

Robert Morris, MIT ACM CCS 2002

http://pdos.lcs.mit.edu/tarzan/

The Grail of Anonymization

 Participant can communicate anonymously with non-participant

- User can talk to CNN.com
- Nobody knows who user is

Our Vision for Anonymization

- Thousands of nodes participate
- Bounce traffic off one another

- Mechanism to organize nodes: peer-to-peer
- All applications can use: IP layer

Alternative 1: Proxy Approach

- Intermediate node to proxy traffic
- Completely trust the proxy

Anonymizer.com

Threat model

- Corrupt proxy(s)
 - Adversary runs proxy(s)
 - Adversary targets proxy(s) and compromises, possibly adaptively

- Network links observed
 - Limited, localized network sniffing
 - Wide-spread (even global) eavesdropping

e.g., Carnivore, Chinese firewall, ISP search warrants

Failures of Proxy Approach

- Proxy reveals identity
- Traffic analysis is easy

Failures of Proxy Approach

- Proxy reveals identity
- Traffic analysis is easy
- CNN blocks connections from proxy
- Adversary blocks access to proxy (DoS)

Alternative 2: Centralized Mixnet

- MIX encoding creates encrypted tunnel of relays
 - Individual malicious relays cannot reveal identity
- Packet forwarding through tunnel

Onion Routing, Freedom

Small-scale, static network

CNN blocks core routers

- CNN blocks core routers
- Adversary targets core routers

Alternative 2: Centralized Mixnet

- CNN blocks core routers
- Adversary targets core routers
- So, add cover traffic between relays

- CNN blocks core routers
- Adversary targets core routers

- CNN blocks core routers
- Adversary targets core routers
- Still allows network-edge analysis

- Internal cover traffic does not protect edges
- External cover traffic prohibitively expensive?
 n² communication complexity

Tarzan goals

• No distinction between anon proxies and clients

• Anonymity against corrupt relays

• Anonymity against global eavesdropping

• Application-independence

Tarzan: Me Relay, You Relay

- Thousands of nodes participate
 - CNN cannot block everybody
 - Adversary cannot target everybody

Tarzan: Me Relay, You Relay

- Thousands of nodes participate
- Cover traffic protects all nodes
 - Global eavesdropping gains little info

Benefits of Peer-to-Peer Design

- Thousands of nodes participate
- Cover traffic protects all nodes
- All nodes also act as relays
 - No network edge to analyze
 - First hop does not know he's first

Tarzan goals

• No distinction between anon proxies and clients

• Anonymity against corrupt relays

• Anonymity against global eavesdropping

• Application-independence

Tarzan: Joining the System

Contacts known peers to learn neighbor lists
Validates each peer by directly pinging

Tarzan: Generating Cover Traffic

4. Nodes begin passing cover traffic with mimics:

- Nodes send at some traffic rate per time period
- Traffic rate independent of actual demand
- All packets are same length and link encrypted

Tarzan: Selecting tunnel nodes

Iteratively selects peers and builds tunnel from among last-hop's mimics

- Adversary can join more than once by spoofing addresses outside its control
- ✓ Contact peers directly to validate IP addr and learn PK

 Adversary can join more than once by running many nodes on each machine it controls

✓ Randomly select by subnet "domain" (/16 prefix, not IP)

- Adversary can join more than once by running many nodes on each machine it controls
- ✓ Randomly select by subnet "domain" (/16 prefix, not IP)

 Colluding adversary can only select each other as neighbors

✓ Choose mimics in universally-verifiable random manner

Tarzan: Selecting mimics

3. Nodes pair-wise choose (verifiable) *mimics*

Tarzan goals

- No distinction between anon proxies and clients
 - Peer-to-peer model
- Anonymity against corrupt relays
 - MIX-net encoding
 - Robust tunnel selection
 - Prevent adversary spoofing or running many nodes
- Anonymity against global eavesdropping
 - Cover traffic protects all nodes
 - Restrict topology to make cover practical
 - Choose neighbors in verifiably-random manner
- Application-independence
 - Low-latency IP-layer redirection

Tarzan: Building Tunnel

5. To build tunnel:

Public-key encrypts tunnel info during setup Maps flowid \rightarrow session key, next hop IP addr

6. Reroutes packets over this tunnel

Diverts packets to tunnel source router

Reroutes packets over this tunnel NATs to private address 192.168.x.x Pads packet to fixed length

6. Reroutes packets over this tunnel

Layer encrypts packet to each relay Encapsulates in UDP, forwards to first hop

CNN.com.

Reroutes packets over this tunnel
Strips off encryption
Forwards to next hop within cover traffic

6. Reroutes packets over this tunnel

NATs again to public alias address

6. Reroutes packets over this tunnel

Reads IP headers and sends accordingly

6. Reroutes packets over this tunnel

Response repeats process in reverse

Integrating Tarzan

Use transparently with existing systems

Can build double-blinded channels

Packet forwarding and tunnel setup

• Tunnel Setup (public key ops)

~30 msec / hop latency + network delay

• Packet forwarding (without cover traffic)

<u>pkt size</u>	<u>latency</u>	<u>throughput</u>	
64 bytes	250 µsec	7 Mbits/s	
1024 bytes	600 µsec	60 MBits/s	

Summary

- Application-independence at IP layer
 - Previous systems for email, web, file-sharing, etc.
- No network edge through peer-to-peer design
 - Core routers can be blocked, targetted, or black-box analyzed
- Anonymity against corrupt relays and global eavesdropping
 - Cover traffic within restricted topology
 - MIX-net tunneling through verified mimics
- Scale to thousands
 - Towards a critical mass of users

http://pdos.lcs.mit.edu/tarzan/

Packet forwarding and tunnel setup

Pkt size	Latency	Throughput	
(bytes)	$(\mu$ -sec)	(pkts/s)	(Mbits/s)
64	244	14000	7.2
512	376	8550	35.0
1024	601	7325	60.0

Tunnel length	Setup latency	Variance (1 StD)
1	30.19	1.38
2	46.54	0.53
3	68.37	0.73
4	91.55	1.20
4	(msoc)	1.20