Part II All About Data

Data Abstraction

The scientist described what is: the engineer creates what never was.

Theodor von Karman
The father of supersonic flight
Source of This Unit

- Material of this unit is based on Tamara Munzner, *Visualization Analysis and Design*, AK Peters/CRC Press, 2014.
Overview

- **Topics to be covered in this unit:**
 - **Types**
 - **Data Types:** Item, Attribute, Link, Position, Grid, etc.,
 - **Dataset Types:** Table, Network, Field, Geometry, etc.
 - **Attribute Types:** Categorical, Ordered
 - **Data Semantics:** Key vs. Value, Temporal, etc.
Data and Dataset: 1/5

- The **type** of data is its structural or mathematical interpretation.
 - At the **data** level, it can be an item, a link, an attribute, etc.
 - At the **dataset** level, it is how these data types are combined into a larger structure such as a table, a tree, a field of values.
There are five basic data types:

- **Item**: An individual entity that is discrete (e.g., a number, a row of a table, etc.)

- **Attribute**: Some measurable property (e.g., salary, price, temperature, etc.)

- **Link**: A relationship between items

- **Position**: A spatial data (e.g., location, coordinates, etc.)

- **Grid**: The strategy for sampling continuous data (e.g., geometric and/or topological) between cells.
A **dataset** is a collection of information that is the target of analysis.

There are four basic types:

- Tables
- Networks
- Fields
- Geometry

Complex combinations of multiple data types are commonly seen in real world applications.
There are four basic dataset types: tables, networks, fields and geometry.

- **Tables**
 - Attributes (columns)
 - Items (rows)
 - Cell containing value

- **Networks**
 - Link
 - Node (item)

- **Fields**
 - Grid of positions
 - Cell
 - Attributes (columns)
 - Value in cell

- **Geometry**
 - Position

Tamara Munzner, *Visualization Analysis and Design*, AK Peters, 2015
Data and Dataset: 5/5

- There are four basic dataset types: tables, networks, fields and geometry.
- There are other possible collections of items such as clusters, sets, lists, etc.

<table>
<thead>
<tr>
<th>Tables</th>
<th>Networks & Trees</th>
<th>Fields</th>
<th>Geometry</th>
<th>Clusters, Sets, Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
<td>Items (Node)</td>
<td>Grids</td>
<td>Items</td>
<td>Items</td>
</tr>
<tr>
<td>Attributes</td>
<td>Links</td>
<td>Positions</td>
<td>Positions</td>
<td></td>
</tr>
<tr>
<td>Attributes</td>
<td>Attributes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dataset Type (Table): 1/2

- Tables are commonly seen type of datasets.
- In a 2D table, each row is an **item**, each column is an **attribute**, and each **cell** has a **value** of a particular item and a particular attribute.

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Addr.</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
<th>Income</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>31765</td>
<td>John Dow</td>
<td>xxxxx</td>
<td>Houghton</td>
<td>MI</td>
<td>49931</td>
<td>50K</td>
<td>906-123-4567</td>
</tr>
</tbody>
</table>

item

attribute

cell
Dataset Type (Table): 2/2

- A multidimensional table uses more indices.
- The following 3D table uses three indices to find a cell (i.e., Department, Gender, Status).

<table>
<thead>
<tr>
<th>Department</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accepted</td>
<td>512</td>
<td>353</td>
<td>120</td>
<td>138</td>
<td>53</td>
<td>22</td>
</tr>
<tr>
<td>Rejected</td>
<td>313</td>
<td>207</td>
<td>205</td>
<td>279</td>
<td>138</td>
<td>351</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accepted</td>
<td>89</td>
<td>17</td>
<td>202</td>
<td>131</td>
<td>94</td>
<td>24</td>
</tr>
<tr>
<td>Rejected</td>
<td>19</td>
<td>8</td>
<td>391</td>
<td>244</td>
<td>299</td>
<td>317</td>
</tr>
</tbody>
</table>
Networks (or graphs) are useful to represent relationship between several items.

Here, an **item** is a **node** and a **link** is a relation between two items.

Each node can have associated attributes (e.g., city size), and each link may also have associated attributes (e.g., distance between two cities).

A tree is just a special type of networks.
Dataset Type (Fields): 1/8

- A **field** contains attribute values associated with cells.
- Each **cell** contains measurements or calculations from a **continuous** domain.
- Obtaining values from a continuous domain is usually very challenging because the domain is a continuum.
- A good **sampling** strategy for taking measurements from discrete positions is needed.
Because the number of measurements is only finite, we need to **interpolate** those missing measurements (i.e., showing the values between sampled values).

With a good sample and an appropriate interpolation, the original continuum can be **reconstructed** so that the view is faithful to the measured values from an arbitrary viewpoint.

The handling of continuous domain is always challenging.
The cell structure of a **spatial field** is based on sampling at spatial positions.

Example: We may measure the temperature at a space point and the result is represented by \((x,y,z)\) – a point in space – and the measured temperature \(t\). This is a **scalar field**, because the measurement is a single value.

Example: We may also measure the velocity of a flow, and the result is a point \((x,y,z)\) and a vector (i.e., velocity). This is a **vector field**.
Dataset Type (Fields): 4/8

scalar field

vector field
Dataset Type (Fields): 5/8

- The collected dataset may contain spatial information (i.e., the positions). This is a dataset that contains **spatial data**.
In many applications, the spatial information may not be given. This dataset contains non-spatial data.

Non-spatial data is sometimes also referred to as abstract data.

In this case, the use of space is chosen by visualization designers.
Dataset Type (Fields): 7/8

- **Scientific visualization** is concerned with a situation where spatial position is given, while in **information visualization** is concerned with a situation where the use of space in a visual encoding is chosen by the designer.

 only the nodes and links are provided

Steven L. Rohall
When a field contains data created by sampling at a completely regular intervals, the cells form a uniform grid.
The **geometry** dataset type specifies information about the shape of items with explicit spatial information.

- The items could be points, lines/curves, 2D surfaces/regions, 3D volumes, or even higher dimensional data.
- Therefore, geometry datasets are spatial, and typically occur in the context of tasks that require shape understanding.
Geometry datasets may not have attributes. In situations where we only care about shape understanding, only the positions would be enough.
Geometry: 3|4

- Contours generated from a spatial field
- Klein bottle with a vector field on a regular grid
Clebsch cubic surface with 27 lines
Dataset Availability

- There are two kinds of dataset availability: **static** or **dynamic**.
- A **static file** means the entire dataset is available all at once.
- Some datasets are only available as **dynamic streams**, where the dataset information trickles in over the course of the visualization session.
- This dynamic information may mean adding new items, deleting existing ones, or the values of existing items may even change.
Attribute Types

- Attribute types are:
 - Categorical
 - Ordered
 - Ordinal
 - Quantitative
 - The direction of attribute ordering can be:
 - Sequential
 - Diverging
 - Cyclic
Categorical Type

- **Categorical** data does not have an implicit ordering, but often has a hierarchical structure.
- **Examples**: Gender types, file types, shapes type (e.g., triangles, circles, rectangles, etc.), fruit types (e.g., apples, oranges, bananas, etc.)
- The above examples do not have an “implicit” order imposed to the data.
- However, one may enforce an order to each of the above example. For example, fruit names are arranged in alphabetical order.
Ordered Type

- **Ordered** data has an implicit ordering. There are two ordered types: ordinal and quantitative.
 - **Ordinal**: It has a well-defined ordering but cannot do full-fledged arithmetic.
 - **Example**: shirt size, shoe size, grade (e.g., A, AB, etc.), ranking, zip code, etc.
 - **Quantitative**: This is an ordinal dataset with a well-defined capability to perform arithmetic and comparison.
 - **Example**: weight, height, scores, etc.
Direction of Ordering: 1/2

- An order dataset can be **sequential** or **diverging**.
- A **sequential** dataset has a homogeneous range from a minimum to a maximum.
- A **diverging** dataset has data measured from a based point and extends to both ends. An elevation dataset is diverging because its measurement start at sea level.
Direction of Ordering: 2/2

- Both ends of a **diverging** dataset are sequential.
- A **cyclic** dataset has its values wrap around back to a starting point (e.g., the hour of the day, the day of a week, and month of the year, angle measures, etc.).
Hierarchical Attributes

- An attribute or across multiple attributes may have a hierarchical structure.

- **Example**: The daily prices of companies collected over the course of a decade is a *time-series* dataset.
 - One attribute is time. Moreover, time can be aggregated hierarchically (e.g., weeks, months, years). Each different aggregation may show interesting patterns.

- Geographic attribute of a postal code may be aggregated to the level of cities, states, etc.
The **semantics** of the data is its real-world meaning.

What does this number 9400109699937278441167 mean? Is it just a big integer? Is it a USPS tracking number or something else? Is it the number of days since the big bang?

Is “Johnson” a person’s name, a company’s name, a city name, a password, a program name?
A **key** attribute is an index used to find **value** attributes.
Key vs. Value Semantics: 2/3

- In a table, the key may just be implicit (e.g., the indices).
- A key attribute can be explicitly given. However, this key attribute must not have duplicate values.
- Recall this: Fields are generated through a systematic sampling so that each grid cell is a spanned by a unique range from a continuous domain.
Key vs. Value Semantics: 3/3

- Fields are *multivariante* (resp., *univariante*) if it has *more than* (resp. *only*) one value attributes.

- The *multidimensional* structure of a field depends on the number of keys.

- A field can be multivariante and multidimensional at the same time if it has multiple values and multiple keys.
Scalar Fields

- A scalar field is *univariate*, with a single attribute at each point in space.
- This means we assign a single value (e.g., temperature) to each point in space.

colors are used to show the values of a scalar field
Vector Fields

- A vector field is *multivariate*, with a list of multiple attribute values (i.e., a vector) at each point in space.

A vector is assigned to a representative point of a cell.
A tensor field is multivariate and has an array of attributes at a point. A rank n tensor in m-dimensional space is a mathematical object that has n indices and m^n components and obeys some transformation rules.

Tensors are being used in differential geometry, physics, and engineering.
Example: The Cauchy stress tensor or simply stress tensor that can be represented by a 3x3 real matrix \(\sigma = [\sigma_{ij}]_{3 \times 3} \).
Example: The metric measure on a manifold can also be represented as a tensor.

- The Euclidean metric tensor in the n-dimensional Euclidean space E^n is the $n \times n$ identity matrix.

- The curvature tensor measures the curvature at a point in a space.
The metric tensor of the Minkowski space, used in special relativity, is the one on the left.

The Schwarzschild metric that describes the space-time around a spherical symmetric body is the one on the right.

\[
g = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{bmatrix}
\]

\[
g_{\mu\nu} = \begin{bmatrix}
(1 - \frac{2GM}{rc^2}) & 0 & 0 & 0 \\
0 & -(1 - \frac{2GM}{rc^2})^{-1} & 0 & 0 \\
0 & 0 & -r^2 & 0 \\
0 & 0 & 0 & -r^2 \sin^2 \theta
\end{bmatrix}
\]
Diffusion tensor visualization: The directionality of water diffusion. Warmer hues represent greater directional preference for water diffusion and cooler hues indicate more random water diffusion. – Michael Borich
Field Semantics

- On previous slides, the categorization of spatial fields requires knowledge of the attribute semantics and cannot be determined from type information alone.
- Thus, if multiple measured values at each spatial point are given without further information, there is no sure way to know its structure.
Temporal Semantics: 1/2

- A *temporal* attribute is any kind of information that relates to time.
- Data about time is complicated to handle because of the rich hierarchical structure that can be used to reason about time and the potential for periodic structure.
- The analysis of time usually involves finding or verifying periodicity either at a predetermined scale or at some scale unknown in advance.
Temporal Semantics: 2/2

- It is important to note that there could be multiple ways to visually encoding that data.
- One of these ways may involve animation.
- A temporal key attribute can have either value of key semantics. For example,
 - The day/time (or duration) a transaction happened is a dependent value
 - Time can be an independent key – a MRI scan can have the independent keys of \((x,y,z,t)\) to cover spatial position \((x,y,z)\) and time \(t\).
Time-Varying Data: 1/2

- A dataset has **time-varying** semantics when time is one of the key attributes, as opposed to when the temporal attribute is a value rather than a key.

- **Time-Varying Semantics**: The use of tracking device to track movements. The temporal attribute is an independent key.

- **Non Time-Varying Semantics**: A train scheduling table contains start time and end time. In this case, the time entries are values.
A commonly seen temporal dataset is a \textit{time-series} dataset.

A time-series dataset usually has an ordered sequence of time-value pairs such as \((t, x)\), where \(t\) and \(x\) are time and value.

Note that the time values may not always be spaced at uniform temporal intervals.

Typical time-series analysis tasks involve finding trends, correlations, autocorrelations, periods, variations at multiple time scales.
The End