Part IV Arranging Space

Tables

The bearing of a child takes nine months, no matter how many women are assigned.

Fall 2020

Frederick P. Brooks Jr.
Source of This Unit

- Material of this unit is based on Chapter 7 of Tamara Munzner, *Visualization Analysis and Design*, AK Peters/CRC Press, 2014.
Channel Ranking

- The three highest ranked effectiveness channels for quantitative and ordered attributes are all related to spatial position: planar position on common scale, planar position along a magnitude scale, and length.
- The highest ranked effectiveness channel for categorical attributes (e.g., grouping) is also about the use of space.

Diagram:

- **Magnitude Channels:** Ordered Attributes
 - Position on common scale
 - Position on unaligned scale
 - Length (1D size)

- **Identity Channels:** Categorical Attributes
 - Spatial region
Keys and Values

- A **key** is an independent attribute that can be used as a unique index to look up items in a table.
- A **value** is a dependent attribute, the value of a cell in a table.
- Key attributes can be categorical or ordinal, whereas values can be all three of the types: categorical, ordinal, or quantitative.
- The unique values for a categorical or ordered attribute are called **levels**.
Keys and Values

- The visual encoding choices directly relate to the semantics of the table’s attributes: how many keys and how many values does it have?
 - An idiom could only show values, with no key – scatter plots can show two value attributes
 - An idiom shows one key and one value – bar charts
 - An idiom shows two keys and many values – heatmaps
 - Idioms that show many keys and many values often recursively subdivide space into many regions, as with scatter plot matrices.
Express: Quantitative Values

1/2

- Using space to express quantitative attributes is a simple use of the spatial position channel.
- The attribute is mapped to spatial position along an axis.
- The simplest case is encoding a single attribute, each item is encoded with a mark at some position along the axis.
- Additional attributes may also be encoded on the same mark with other nonspatial channels such as color and size.
A **glyph** is an object with internal structure that arises from multiple marks.

In a more complex situation, a composite glyph object is drawn, with internal structure that arises from multiple marks.

Each mark lies within a subregion in the glyph that is visually encoded differently, so the glyph can show multiple attributes at once.
Example: Scatter plots 1/4

- The idiom of *scatter plots* encodes two quantitative value variables using both the *horizontal* and *vertical* spatial position channels, and the mark type is a point.

- Scatter plots are effective for the abstract tasks of providing *overviews* and characterizing *trends*, *distributions*, and specifically for finding *outliers* and *extreme values*.

- Scatter plots are also very effective for the abstract task of judging the *correlation* between two attributes.
Example: Scatter plots 2/4

Each point represents a country

The color channel is used for the categorical country attribute

The size channel is for quantitative population attribute
Transformations may be applied to quantitative data value to reveal more insight.

Diamond weight vs. price

Original data shows an exponential trend

Transforming both attributes (i.e., weight and price) with logarithm, the new plots appears to have a linear correlation.
The scalability of a scatter plot is limited by the need to distinguish points from each other.

Thus, it is good for hundreds of items.

<table>
<thead>
<tr>
<th>Idiom</th>
<th>Scatter Plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Two quantitative value attributes (Table)</td>
</tr>
<tr>
<td>Encoding</td>
<td>Express values with horizontal and vertical spatial position with point marks</td>
</tr>
<tr>
<td>Task</td>
<td>Find trends, outliers, distribution, correlation; local clusters</td>
</tr>
<tr>
<td>Scale</td>
<td>Hundreds items</td>
</tr>
</tbody>
</table>
Separate, Order and Align Categorical Regions: 1/4

- The use of space to encode categorical attributes is more complex.
- This is because spatial position is an ordered magnitude visual channel, but categorical attributes have unordered identity semantics.
- If categorical attributes are encoded with spatial position, the principle of expressiveness would be violated.
Separate, Order and Align Categorical Regions: 2/4

- The semantics of categorical attributes does match up well with the idea of a spatial **region**: regions are contiguous bounded areas that are distinct from each other.
- Drawing all items with the same values for a categorical attribute within the same region uses spatial **proximity** to encode **similarity**.
- These regions must be given spatial positions in the plane in order to draw any specific picture.
Separate, Order and Align Categorical Regions: 3/4

- The problem in drawing regions can be broken down into three operations: separating into regions, aligning the regions, and ordering the regions.

- The separation and the ordering must happen, but the alignment is usually optional.

- The separation should be done according to a categorical attribute, the ordering and alignment should be done by other ordered attribute.
Separate, Order and Align Categorical Regions: 4/4

- The attribute used to order the regions must have ordered semantics, and hence it cannot be the categorical one that was used to do the separation.

- If alignment is done, the ordered attribute used to control the alignment between regions may be the same one used to encode the spatial position of items within the region.
List Alignment: One Key

- If we have only one key, using the key yields one region per item separates the data into regions.
- The regions are frequently arranged in a one-dimensional list alignment, either horizontal or vertical.
- The view itself is a two-dimensional area: the aligned list of items uses one of the spatial dimension, and the region to show the values uses the other.
Examples

- The following examples will be discussed to illustrate the List Alignment of One Key
 - Bar Charts
 - Stacked Bar Charts
 - Stream Graphs
 - Dot and Line Charts
The bar chart idiom uses a line mark and encode a quantitative value attribute with one spatial channel.

The other attribute is a categorical key attribute.

Each line mark forms a separate region of space.

The line marks are all aligned position channel.

quantitative

Avg Weight (lbs)

Capybara Cat Wombat

categorical

Animal Type

aligned

alphabetical order easy to find a type
Example: Bar Charts 2/3

- A default arrangement may hide what could be meaningful patterns in the dataset.
- The right chart uses animal weight order that is encoded by the bar height.
- The scalability with bar charts are the available space for all the bars.
The following table is a summary of the use of bar charts.

<table>
<thead>
<tr>
<th>Idiom</th>
<th>Bar Charts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Table: One quantitative attribute, one categorical key attribute</td>
</tr>
<tr>
<td>Encoding</td>
<td>Line marks, express value attribute with aligned vertical position, separate key attribute with horizontal position</td>
</tr>
<tr>
<td>Task</td>
<td>Good for lookup and compare values</td>
</tr>
<tr>
<td>Scale</td>
<td>Dozens to hundreds of levels</td>
</tr>
</tbody>
</table>
The **stacked bar chart** is a more complex glyph for each bar, where multiple sub-bars are stacked vertically.

The length of the composite glyph still encode a value as in a standard bar chart, but each component also encode a length-encoded value.

Stacked bar charts show information about multidimensional tables, specifically a two-dimensional table with two keys.
Example: Stacked Bar Charts 2/5

- Stacked bar charts are an example of a list alignment used with more than one key attribute and support the task of lookup according to either of the two keys.
- Stacked bar charts typically use color and length coding.
- Each subcomponent is colored according to the same key that is used to determine the vertical ordering.
Example: Stacked Bar Charts

Processor/Procedure vs. cache miss

categorical: processor/procedure

aligned

type of cache miss

a glyph

categorical: processor/procedure
Example: Stacked Bar Charts

4/5

- The cache miss bars can easily be compared because they are aligned.
- However, each sub-component in a glyph is difficult to compare because they are not aligned to a common scale.
- The order of stacking is significant for the kinds of patterns that are most easily visible.
- Scalability is similar to standard bar charts in terms of categories, but it is more limited for the key used to stack the subcomponents.
Example: Stacked Bar Charts

<table>
<thead>
<tr>
<th>Idiom</th>
<th>Stacked Bar Charts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Multidimensional Table: One quantitative attribute, two categorical key attributes</td>
</tr>
<tr>
<td>Encoding</td>
<td>Bar glyph with length-coded subcomponents of value attribute for each category of secondary key attribute. Separate bars by category of primary key attribute.</td>
</tr>
<tr>
<td>Task</td>
<td>Part-to-Whole relationship, lookup values, find trends</td>
</tr>
<tr>
<td>Scale</td>
<td>Key attribute (main axis): dozens to hundred of levels. Key attribute (stacked glyph axis): several to one dozen.</td>
</tr>
</tbody>
</table>
Example: Stream Graphs 1/6

- **A stream graph** is a type of stacked area graph which is displaced around a central axis, resulting in a flowing, organic shape.

glyph: the number of times a musician’s music was listened to each week
The **stream graph** idiom shows derived geometry that emphasizes the continuity of the horizontal layers that represented the artists, rather than showing individual vertical glyphs that would emphasize listening behavior at a specific time.

glyph: the number of times a musician’s music was listened to each week.
Example: Stream Graphs 3/6

- The derived geometry is the result of a global computation, whereas individual glyphs can be constructed using only calculations about their own local region.

- The stream graph idiom emphasizes the legibility of the individual streams with a deliberately organized silhouette, rather than using the horizontal axis as the baseline.
Example: Stream Graphs 4/6

- The shape of the layout is optimized as a trade-off between multiple factors:
 A. the external silhouette of the entire shape
 B. the deviation of each layer from the baseline
 C. the amount of wiggle in the baseline

- The order of the layers is computed with an algorithm that emphasize a derived value.
Example: Stream Graphs 5/6

Stream graph with layers ordered by the volatility of artist’s popularity

Stream graph with layers ordered by onset time when artist’s music of first gain attention
Example: Stream Graphs 6/6

<table>
<thead>
<tr>
<th>Idiom</th>
<th>Stream Graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Multidimensional Table: One quantitative attribute (count), one ordered key attribute (time), one categorical key attribute (artist)</td>
</tr>
<tr>
<td>Encoding</td>
<td>One quantitative attribute (for layer ordering)</td>
</tr>
<tr>
<td>Task</td>
<td>Use derived geometry showing artist layers across time, layer height encodes counts.</td>
</tr>
<tr>
<td>Scale</td>
<td>Key attribute (time, main axis): hundreds of time points. Key attribute (artist, short axis): dozens to hundreds</td>
</tr>
</tbody>
</table>
Example: Dot and Line Charts

1/10

- The **dot chart** idiom is a visual encoding of one quantitative attribute using spatial position against one categorical attribute using point marks.

- The **line charts** idiom extends dot charts with line connection marks running between the points.
Example: Dot and Line Charts 2/10

- Dot charts, line charts and bar charts all show one value attribute and one key attribute with a rectilinear spatial layout.

- All these chart types are often extended to show a second categorical attribute using color and size channels.

dot chart

- **quantitative attribute**
- **ordered categorical**

line chart
Example: Dot and Line Charts

- Both charts use one spatial position channel to express a quantitative key attribute.
- However, line charts also use connections marks to emphasize the ordering of the items and the next one. This implies a trend relationship.
Example: Dot and Line Charts 4/10

- Line charts should be used for ordered keys but not categorical keys. A line chart used for categorical data violates the expressiveness principle, because it implies a trend that does not exist.

- This implication can be so strong that override common knowledge.
Example: Dot and Line Charts

5/10

Bar charts encourage discrete comparisons

Line charts encourage trend assessments
When designing a line chart, an important question to consider is its **aspect ratio**: the ratio of width to height of the entire plot.

Note that our ability to judge angles is more accurate at exact diagonals (i.e., 45°) than at arbitrary directions.

The **banking to 45°** idiom computes the best aspect ratio for a chart in order to maximize the number of line segments that fall close to the diagonal.
Example: Dot and Line Charts
7/10

- The multiscale banking to 45° technique, which comes from signal processing, automatically finds a set of informative aspect ratios to analyze the line graph in the frequency domain, with the derived variable of the power spectrum.
Example: Dot and Line Charts
8/10

Aspect Ratio ≈ 4: Shows the classic low-frequency oscillations in the maximum values of each sunspot cycle

Aspect Ratio ≈ 22: Shows that many cycles have a steep onset followed by more gradual decay
Example: Dot and Line Charts

9/10

<table>
<thead>
<tr>
<th>Idiom</th>
<th>Dot Charts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Table: One quantitative attribute, one ordered key attribute</td>
</tr>
<tr>
<td>Encoding</td>
<td>Express value attribute with aligned vertical position and point marks. Separate/order into horizontal regions by key attribute</td>
</tr>
</tbody>
</table>
Example: Dot and Line Charts

<table>
<thead>
<tr>
<th>Idiom</th>
<th>Line Charts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Table: One quantitative attribute, one ordered key attribute</td>
</tr>
<tr>
<td>Encoding</td>
<td>Express value attribute with aligned vertical position and point marks. Separate/order into horizontal regions by key attribute</td>
</tr>
<tr>
<td>Why</td>
<td>Show trends</td>
</tr>
<tr>
<td>Scale</td>
<td>Key attribute: hundreds levels</td>
</tr>
</tbody>
</table>
Matrix Alignment: Two Keys

- Datasets with two keys are often arranged in a two-dimensional matrix alignment, where one key is distributed along the rows and the other along the columns.
- Commonly seen arrangements are
 - Cluster Heatmaps
 - Scatter Plot Matrix
The idiom of **heatmap** is one of the simplest uses of the matrix alignment.

Each cell is fully occupied by an area mark encoding a single quantitative value attribute with color.

The benefit of heatmaps is that visually encoding quantitative data with color using small area marks is very compact, so they are good for providing **overviews with high information density**.
The keys are genes and experimental conditions, and the quantitative value attribute is the activity level of a particular gene in a particular experimental condition as measured by a microarray.

The heatmap uses a diverging red-green colormap, a common but not necessary good approach (i.e., color blindness) in the genomics domain.
Example: Cluster Heatmaps 3/9

- The area marks in a heatmap are often several pixels on a side for easy distinguishability.
- The scalability limits are hundreds of levels for each of the two categorical key attributes.
- On the other hand, only a small number of different levels of the quantitative attribute can be distinguishable, because of the limits on color perception in small noncontiguous regions.
- Usually, only 3 to 11 bins can be used.
The **cluster heatmap** idiom combines the basic heatmap with **matrix reordering**, where two attributes are reordered in combination.

The goal of matrix reordering is to group similar cells in order to check for large-scale patterns between both attributes.
Example: Cluster Heatmaps 5/9

- A **cluster heatmap** is the juxtaposed combination of a heatmap and two dendrograms showing the derived data of the cluster hierarchies used in the reordering.

- A **dendrogram** (from Greek *dendro* “tree” and *gramma* “drawing”) is a tree diagram used to illustrate the arrangement of the clusters produced by hierarchical clustering.
The cluster hierarchy encapsulates the complete history of how a clustering algorithm operates iteratively.

Each leaf represents a cluster of a single item; the interior nodes record the order in which clusters are merged together based on similarity, with the root representing the single cluster of all items.
Example: Cluster Heatmaps 7/9

These two are dendrograms.
Example: Cluster Heatmaps 8/9

<table>
<thead>
<tr>
<th>Idiom</th>
<th>Heatmaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Table: Two categorical key attributes (genes, conditions), one quantitative value attribute (activity level)</td>
</tr>
<tr>
<td>Encoding</td>
<td>2D Matrix alignment of area marks, diverging colormap</td>
</tr>
<tr>
<td>Why Task</td>
<td>Find clusters, outliers; summarize</td>
</tr>
<tr>
<td>Scale</td>
<td>Items: as high as one million. Categorical levels: hundreds. Quantitative attribute levels: 3-11.</td>
</tr>
</tbody>
</table>
Example: Cluster Heatmaps 9/9

<table>
<thead>
<tr>
<th>Idiom</th>
<th>Heatmaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derived Data Type</td>
<td>Two hierarchies for table rows and columns</td>
</tr>
<tr>
<td>Encoding</td>
<td>Heatmap: 2D Matrix alignment, ordered by both cluster hierarchies.</td>
</tr>
<tr>
<td></td>
<td>Dendrogram: connection line marks for parent-child relationships in tree</td>
</tr>
</tbody>
</table>
Example: Scatter Plot Matrix 1/5

- A scatter plot matrix (SPLOM) is a matrix where each cell contains an entire scatter plot, with the original attributes as the rows and columns.

- A SPLOM is an example of a more complex matrix where each cell shows a complete chart.
Example: Scatter Plot Matrix 2/5

- The key is a simple derived attribute that is the same for both the rows and the columns: the index listing of all the attributes in the original dataset.

- The matrix may also be reordered according to any ordered attribute.

- Usually only the lower or upper triangle of the matrix is shown due to symmetry, and the diagonal cells are also omitted.
Example: Scatter Plot Matrix

attribute values

(length, height) scatter plot
Example: Scatter Plot Matrix 4/5

- **SPLOM**s are used for the abstract tasks of finding correlations, trends, and outliers, in keeping with the usage of their constituent scatter plot components.

- Each scatter plot cell in the matrix requires enough room to plot a dot for each item discernibly. Thus, the scalability is limited to dozen attributes and hundreds items.
Example: Scatter Plot Matrix 5/5

<table>
<thead>
<tr>
<th>Idiom</th>
<th>Scatter Plot Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Table</td>
</tr>
<tr>
<td>Derived Data</td>
<td>Ordered key attributes: list of original attributes</td>
</tr>
<tr>
<td>Encoding</td>
<td>Scatter plots in 2D matrix alignment</td>
</tr>
<tr>
<td>Why Task</td>
<td>Find correlations, trends, outliers</td>
</tr>
<tr>
<td>Scale</td>
<td>Attributes: one dozen</td>
</tr>
<tr>
<td></td>
<td>Items: Dozens to hundreds</td>
</tr>
</tbody>
</table>
Spatial Axis Orientation

- An additional design choice with the use of space is how to orient the spatial axes: **rectilinear**, **parallel** or **radial**.
- A **rectilinear** layout is easy, just the horizontal and vertical axes as we are used to so far.
- Commonly seen arrangements are
 - **Parallel** Layout: Parallel Coordinates
 - **Radial** Layouts: Radial bar charts, pie charts
The idiom of **parallel coordinates** is an approach for visualizing many quantitative attributes at once using spatial position.

The coordinate axes are no more perpendicular to each other. Instead, they are *parallel* to each other as the name suggests.
Example: Parallel Coordinates
2/10

Each row is considered a coordinate in 4D space.
(90,80,60,50) is recorded as a polyline.
Example: Parallel Coordinates 3/10

- One original motivation of parallel coordinates was that they can be used for the abstract task of checking for correlation between attributes.

- If two neighboring axes have high positive correlation, the line segments are mostly parallel.

- If two axes have high negative correlation, the line segments mostly cross over each other at a single spot between axes.
Example: Parallel Coordinates

perfect positive correlation

perfect negative correlation
Example: Parallel Coordinates 5/10

- In practice, SPLOMs are typically for findings correlation between attribute pairs easily.
- Parallel coordinates are more often used for other tasks, such as overview over all attributes, finding the range of individual attributes, selecting a range of items, and outlier detection.
Example: Parallel Coordinates

6/10

- Maybe an outlier of that attribute
- A broad range
- A narrower range
Example: Parallel Coordinates 7/10

- Parallel coordinates visually encode data using two dimensions of spatial position.
- The scalability is high in terms of the *number of quantitative attribute values* that can be discriminated because of high-precision channel of planar spatial position.
- The scalability is moderate in terms of *number of attributes* that can be displayed.
Example: Parallel Coordinates
8/10

The left plot has 5 attributes and more than 16000 items in each attribute.

Only the minimum and maximum values can be read easily.

Trends, correlations, outliers can not be seen easily.

The transparency channel may be used to reduce this occlusion problem.
Example: Parallel Coordinates

9/10

- The patterns easily visible by parallel coordinates are those pairwise relationships between neighboring axes.
- Therefore, how to determine the order of the axes is a limitation of using parallel coordinates.
- Beginners may not have intuitions about the meaning of the patterns they see, which must be taught explicitly.
- The combination of more familiar views (e.g., scatter plots) can be helpful.
Example: Parallel Coordinates

10/10

<table>
<thead>
<tr>
<th>Idiom</th>
<th>Parallel Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Table: many value attributes</td>
</tr>
<tr>
<td>Encoding</td>
<td>Parallel layout: horizontal spatial position used to separate axes, vertical spatial position used to express value along each aligned axis with connection line marks as segments between them</td>
</tr>
<tr>
<td>Why Task</td>
<td>Find extremes, correlations, trends, outliers</td>
</tr>
<tr>
<td>Scale</td>
<td>Attributes: dozens along secondary axis, Items: hundreds</td>
</tr>
</tbody>
</table>
Radial Layouts: 1/4

- In a **radial** spatial layout, items are distributed around a circle using the angle channel in addition to one or more linear spatial channels.

- The rectilinear layouts only use two spatial channels.

- A natural coordinate system in radial layouts is the polar coordinates, where one dimension is measured as an angle from a starting line and the other is measured as a distance from a center point.
Radial Layouts: 2/4

Transforming rectilinear to radial layouts maps two parallel lines to a point at the center and a circle at the perimeter.
Radial Layouts: 3/4

- Rectilinear and radial layouts are not equivalent perceptually.
- The change of visual channel has two major consequences:
 A. The angle channel is less accurately perceived than a rectilinear spatial position channel.
 B. The angle channel is inherently cyclic, because the start and end points are the same, as oppose to the inherently linear nature of a position channel.
Radial Layouts: 4/4

- The expressiveness and effectiveness principles suggest some guidelines:

 A. Radial layouts may be more effective than rectilinear ones in showing the *periodicity* of patterns, but encoding nonperiodic data with the periodic channel of angle may be misleading.

 B. Radial layouts imply an *asymmetry* of importance between two attributes and would be inappropriate when the two attributes have equal importance.
Example: Radial Bar Charts 1/1

<table>
<thead>
<tr>
<th>Idiom</th>
<th>Radial Bar Charts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Table: one quantitative attribute, one categorical attribute</td>
</tr>
<tr>
<td>Encoding</td>
<td>Length coding of line marks; radial layout</td>
</tr>
</tbody>
</table>
Example: Pie Charts 1/8

- **Pie charts** encode a single attribute with area marks and the angle channel.

- *Angle* judgments on area marks are less accurate than *length* judgments on line marks.

- The wedges vary in width along the radial axis, from narrow near the center to wide near the outside, making the area judgment particularly difficult.
The **polar area chart** also encodes a single quantitative attribute, but varies the length of the wedge just as a bar chart varies the length of the bar, rather than varying the angle as in a pie chart.

Each mark is encoded with color for easier legibility, but these idioms could be used without color encoding.
Example: Pie Charts 3/8

- The most useful property of pie charts is to show the *relative contribution* of parts to a whole.
- However, this property is not unique to pie charts: a single bar in a *normalized stacked bar chart* can also be used with the more accurate length channel.
- A normalized stacked bar chart stretches each bar to the maximum, showing the percentages rather than absolute counts.
Pie charts require somewhat more screen area than normalized stacked bar charts because the angle channel has lower precision than the length channel.

The aspect ratio also differs, where a pie chart requires a square, whereas a bar chart requires a rectangle.
A study shows that rectilinear layouts outperformed radial layout: fast perception speed and better accuracy.

When one attribute is more important than the other, the use of radial layouts is justified.
Example: Pie Charts 6/8

<table>
<thead>
<tr>
<th>Idiom</th>
<th>Pie Charts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Table: one quantitative attribute, one categorical attribute</td>
</tr>
<tr>
<td>Encoding</td>
<td>Area marks (wedges) with angle channel; radial layout</td>
</tr>
<tr>
<td>Why Task</td>
<td>Part-Whole relationship</td>
</tr>
<tr>
<td>Scale</td>
<td>One dozen categories</td>
</tr>
</tbody>
</table>
Example: Pie Charts 7/8

<table>
<thead>
<tr>
<th>Idiom</th>
<th>Polar Area Charts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Table: one quantitative attribute, one categorical attribute</td>
</tr>
<tr>
<td>Encoding</td>
<td>Area marks (wedges) with length channel; radial layout</td>
</tr>
<tr>
<td>Why Task</td>
<td>Part-Whole relationship</td>
</tr>
<tr>
<td>Scale</td>
<td>One dozen categories</td>
</tr>
</tbody>
</table>
Example: Pie Charts 8/8

<table>
<thead>
<tr>
<th>Idiom</th>
<th>Normalized Stacked Bar Charts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Multidimensional Table: one quantitative value attribute, two categorical key attributes</td>
</tr>
<tr>
<td>Derived Data Type</td>
<td>One quantitative value attribute (normalized version of original attribute)</td>
</tr>
<tr>
<td>Encoding</td>
<td>Line marks with length channel; rectilinear layout</td>
</tr>
<tr>
<td>Why Task</td>
<td>Part-Whole relationship</td>
</tr>
<tr>
<td>Scale</td>
<td>One dozen categories for stacked attributes. Several dozen categories for axis attribute</td>
</tr>
</tbody>
</table>
Another design choice with spatial visual encoding is whether a layout is dense or sparse. A related, but not identical, choice is whether a layout is space-filling. A dense layout uses small and densely populated marks to provide an overview of as many items as possible with very high information density. A maximally dense layout has point marks that are only a single pixel in size and line marks that are a single pixel in width.
Tarantula is a software engineering tool for visualizing test coverage.

Tarantula shows a dense overview of source code with lines colored by execution status of a software suite.
Spatial Layout Density: 3/3

- A *space-filling* layout has the property that it fills all available space in the view.
- Space-filling layouts typically use area marks for items or containment marks for relationships, rather than line of connection marks.
- One advantage of space-filling approaches is that they maximize the amount of room available for color coding, increasing the chance that the colored regions will be large enough.
- One disadvantage is that the design cannot make use white space in the layout.
The End